Skip to main content

POInT: A Tool for Modeling Ancient Polyploidies Using Multiple Polyploid Genomes

  • Protocol
  • First Online:
Plant Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2512))

Abstract

Ancient polyploidy events are widely distributed across the evolutionary history of eukaryotes. Here, we describe a likelihood-based tool, POInT (the Polyploidy Orthology Inference Tool), for modeling ancient whole genome duplications and triplications, assigning homoeologous genes to subgenomes and inferring gene losses across different parental subgenomes after polyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104:8397–8402

    Article  CAS  Google Scholar 

  2. Conant GC, Wolfe KH (2008) Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics 179:1681–1692

    Article  Google Scholar 

  3. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A 84:2363–2367

    Article  CAS  Google Scholar 

  5. Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K, Peng Y, Schmutz J, Lyons E, Pires JC, Edger PP, Conant GC (2018) Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLoS Genet 14(3):e1007267em

    Article  Google Scholar 

  6. Press WH, Teukolsky SA, Vetterling WA, Flannery BP (1992) Numerical recipes in C. Cambridge University Press, New York, NY

    Google Scholar 

  7. Evangelisti AM, Conant GC (2010) Nonrandom survival of gene conversions among yeast ribosomal proteins duplicated through genome doubling. Genome Biol Evol 2:826–834

    Article  Google Scholar 

  8. Scienski K, Fay JC, Conant GC (2015) Patterns of gene conversion in duplicated yeast histones suggest strong selection on a coadapted macromolecular complex. Genome Biol Evol 7(12):3249–3258

    Article  Google Scholar 

  9. Casola C, Conant GC, Hahn MW (2012) Very low rate of gene conversion in the yeast genome. Mol Biol Evol 29(12):3817–3826

    Article  CAS  Google Scholar 

  10. Conant GC (2014) Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy. Mol Biol Evol 31(12):3184–3193

    Article  CAS  Google Scholar 

  11. Conant GC (2020) The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 15(4):e0231356

    Article  CAS  Google Scholar 

  12. Schoonmaker A, Hao Y, Bird D, Conant GC (2020) A single, shared triploidy in three species of parasitic nematodes. G3 10:225–233

    Article  CAS  Google Scholar 

  13. Byrne KP, Wolfe KH (2005) The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15(10):1456–1461

    Article  CAS  Google Scholar 

  14. Gordon JL, Byrne KP, Wolfe KH (2009) Additions, losses and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 5(5):e1000485

    Article  Google Scholar 

  15. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  Google Scholar 

  16. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng 5(1):46–55

    Article  Google Scholar 

  17. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618

    Article  CAS  Google Scholar 

  18. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and Psi-blast: a new-generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  19. Doring A, Weese D, Rausch T, Reinert K (2008) SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9:11

    Article  Google Scholar 

  20. Conant GC, Wagner A (2002) GenomeHistory: a software tool and its application to fully sequenced genomes. Nucleic Acids Res 30(15):3378–3386

    Article  CAS  Google Scholar 

  21. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  Google Scholar 

  22. Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  Google Scholar 

  23. Conant GC, Wolfe KH (2006) Functional partitioning of yeast co-expression networks after genome duplication. PLoS Biol 4:e109

    Article  Google Scholar 

  24. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11(5):715–724

    CAS  PubMed  Google Scholar 

  25. Jeffers J, Reinders J (2013) Intel Xeon Phi coprocessor high performance programming. Morgan Kaufmann, Waltham, MA

    Google Scholar 

  26. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman and Company, New York, NY

    Google Scholar 

Download references

Acknowledgments

The authors were supported by U.S. National Science Foundation grant NSF-IOS-1339156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin C. Conant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hao, Y., Conant, G.C. (2022). POInT: A Tool for Modeling Ancient Polyploidies Using Multiple Polyploid Genomes. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics