Skip to main content

Discovering the Secrets of Ancient Plants: Recovery of DNA from Museum and Archaeological Plant Specimens

  • Protocol
  • First Online:
Plant Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2512))

Abstract

Plant DNA preserved in ancient specimens has recently gained importance as a tool in comparative genomics, allowing the investigation of evolutionary processes in plant genomes through time. However, recovering the genomic information contained in such specimens is challenging owing to the presence of secondary substances that limit DNA retrieval. In this chapter, we provide a DNA extraction protocol optimized for the recovery of DNA from degraded plant materials. The protocol is based on a commercially available DNA extraction kit that does not require handling of hazardous reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Orlando L, Allaby R, Skoglund P et al (2021) Ancient DNA analysis. Nat Rev Methods Prim 1:15. https://doi.org/10.1038/s43586-020-00011-0

    Article  CAS  Google Scholar 

  2. Mitchell KJ, Rawlence NJ (2021) Examining natural history through the lens of Palaeogenomics. Trends Ecol Evol 36:258–267. https://doi.org/10.1016/j.tree.2020.10.005

    Article  PubMed  Google Scholar 

  3. Kistler L, Bieker VC, Martin MD et al (2020) Ancient plant genomics in archaeology, herbaria, and the environment. Annu Rev Plant Biol 71:605–629. https://doi.org/10.1146/annurev-arplant-081519-035837

    Article  CAS  PubMed  Google Scholar 

  4. Mascher M, Schuenemann VJ, Davidovich U et al (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48(9):1089–1093. https://doi.org/10.1038/ng.3611

    Article  CAS  PubMed  Google Scholar 

  5. Vallebueno-Estrada M, Rodríguez-Arévalo I, Rougon-Cardoso A et al (2016) The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc Natl Acad Sci U S A 113:14151–14156. https://doi.org/10.1073/pnas.1609701113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramos-Madrigal J, Smith BD, Moreno-Mayar JV et al (2016) Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26:3195–3201. https://doi.org/10.1016/j.cub.2016.09.036

    Article  CAS  PubMed  Google Scholar 

  7. Swarts K, Gutaker RM, Benz B et al (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357:512–515. https://doi.org/10.1126/science.aam9425

    Article  CAS  PubMed  Google Scholar 

  8. Scott MF, Botigué LR, Brace S et al (2019) A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Nat Plants 5:1120–1128. https://doi.org/10.1038/s41477-019-0534-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smith O, Nicholson WV, Kistler L et al (2019) A domestication history of dynamic adaptation and genomic deterioration in sorghum. Nat Plants 5:369–379. https://doi.org/10.1038/s41477-019-0397-9

    Article  PubMed  Google Scholar 

  10. Ramos-Madrigal J, Runge AKW, Bouby L et al (2019) Palaeogenomic insights into the origins of French grapevine diversity. Nat Plants 5:595–603. https://doi.org/10.1038/s41477-019-0437-5

    Article  PubMed  Google Scholar 

  11. Wagner S, Lagane F, Seguin-Orlando A et al (2018) High-throughput DNA sequencing of ancient wood. Mol Ecol 27:1138–1154. https://doi.org/10.1111/mec.14514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166:409–418. https://doi.org/10.1111/j.1469-8137.2005.01360.x

    Article  CAS  PubMed  Google Scholar 

  13. Palmer SA, Smith O, Allaby RG (2012) The blossoming of plant archaeogenetics. Ann Anat 194:146–156. https://doi.org/10.1016/j.aanat.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  14. Birks HJB, Birks HH (2016) How have studies of ancient DNA from sediments contributed to the reconstruction of quaternary floras? New Phytol 209:499–506. https://doi.org/10.1111/nph.13657

    Article  CAS  PubMed  Google Scholar 

  15. Parducci L, Bennett KD, Ficetola GF et al (2017) Ancient plant DNA in lake sediments. New Phytol 214:924–942. https://doi.org/10.1111/nph.14470

    Article  CAS  PubMed  Google Scholar 

  16. Winkel T, Aguirre MG, Arizio CM et al (2018) Discontinuities in quinoa biodiversity in the dry Andes: an 18-century perspective based on allelic genotyping. PLoS One 13:e0207519. https://doi.org/10.1371/journal.pone.0207519

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hofreiter M, Serre D, Poinar HN et al (2001) Ancient DNA. Nat Rev Genet 2:353–359. https://doi.org/10.1038/35072071

    Article  CAS  PubMed  Google Scholar 

  18. Paabo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. https://doi.org/10.1146/annurev.genet.37.110801.143214

    Article  CAS  PubMed  Google Scholar 

  19. Dabney J, Meyer M, Pa S (2013) Ancient DNA damage. Cold Spring Harb Perspect Biol 5:1–7. https://doi.org/10.1101/cshperspect.a012567

    Article  CAS  Google Scholar 

  20. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 113:1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

    Article  CAS  PubMed  Google Scholar 

  21. Cappellini E, Gilbert MTP, Geuna F et al (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205–217. https://doi.org/10.1007/s00114-009-0629-3

    Article  CAS  PubMed  Google Scholar 

  22. Wales N, Andersen K, Cappellini E et al (2014) Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One 9:e86827. https://doi.org/10.1371/journal.pone.0086827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmer SA, Moore JD, Clapham AJ et al (2009) Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation. PLoS One 4:2–8. https://doi.org/10.1371/journal.pone.0006301

    Article  CAS  Google Scholar 

  24. Kistler L (2012) Ancient DNA extraction from plants. In: Shapiro B, Hofreiter M (eds) Ancient DNA: methods and protocols. Humana Press, Totowa, NJ, pp 71–79

    Chapter  Google Scholar 

  25. Heenan PB, Wood JR, Cole TL (2018) A partial cpDNA trnL sequence from the extinct legume Streblorrhiza speciosa confirms its placement in the tribe Coluteae (Fabaceae). Phytotaxa 374:87–91. https://doi.org/10.11646/phytotaxa.374.1.8

    Article  Google Scholar 

  26. Champlot S, Berthelot C, Pruvost M et al (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One 5:e13042. https://doi.org/10.1371/journal.pone.0013042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamariz J, Voynarovska K, Prinz M, Caragine T (2006) The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci 51:790–794. https://doi.org/10.1111/j.1556-4029.2006.00172.x

    Article  CAS  PubMed  Google Scholar 

  28. Shapiro B, Barlow A, Heintzman PD et al (2019) Ancient DNA methods and protocols, 2nd edn. Springer, New York, NY

    Book  Google Scholar 

  29. Cooper A, Poinar H (2000) Ancient DNA: do it right or not at all. Science 289:1139. https://doi.org/10.1126/science.289.5482.1139b

    Article  CAS  PubMed  Google Scholar 

  30. Llamas B, Valverde G, Fehren-Schmitz L et al (2017) From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci Technol Archaeol Res 3:1–14. https://doi.org/10.1080/20548923.2016.1258824

    Article  Google Scholar 

Download references

Acknowledgments

O.E. was supported during his PhD by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), grants CF14-0461/CF15-0672/CF16-0551: Recovery of lost genetic diversity in barley from the Carlsberg Foundation; and grant LP130100648: Identifying the diversity and evolution of loci associated with adaptation to aridity/heat and salinity in ancient cereal crops from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Estrada, O., Richards, S.M., Breen, J. (2022). Discovering the Secrets of Ancient Plants: Recovery of DNA from Museum and Archaeological Plant Specimens. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics