Skip to main content

Plant In Situ Hi-C Experimental Protocol and Bioinformatic Analysis

  • Protocol
  • First Online:
Plant Comparative Genomics

Abstract

Hi-C enables the characterization of the 0conformation of the genome in the three-dimensional nuclear space. This technique has revolutionized our ability to detect interactions between linearly distant genomic sites on a genome-wide scale. Here, we detail a protocol to carry out in situ Hi-C in plants and describe a straightforward bioinformatics pipeline for the analysis of such data, in particular for comparing samples from different organs or conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782. https://doi.org/10.1016/j.molcel.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453. https://doi.org/10.1038/nature01411

    Article  CAS  PubMed  Google Scholar 

  3. Deng W, Lee J, Wang H et al (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149:1233–1244. https://doi.org/10.1016/j.cell.2012.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76:8–32. https://doi.org/10.1086/426833

    Article  CAS  PubMed  Google Scholar 

  5. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50:161–176. https://www.ncbi.nlm.nih.gov/pubmed/16920639

    PubMed  Google Scholar 

  9. Doğan ES, Liu C (2018) Three-dimensional chromatin packing and positioning of plant genomes. Nat Plants 4:521–529. https://doi.org/10.1038/s41477-018-0199-5

    Article  CAS  PubMed  Google Scholar 

  10. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. https://doi.org/10.1038/nrg3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eagen KP (2018) Principles of chromosome architecture revealed by Hi-C. Trends Biochem Sci 43:469–478. https://doi.org/10.1016/j.tibs.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hövel I, Louwers M, Stam M (2012) 3C technologies in plants. Methods 58:204–211. https://doi.org/10.1016/j.ymeth.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  13. Liu C (2017) In situ hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods Mol Biol 1629:155–166. https://doi.org/10.1007/978-1-4939-7125-1_11

    Article  CAS  PubMed  Google Scholar 

  14. Padmarasu S, Himmelbach A, Mascher M et al (2019) In situ hi-C for plants: an improved method to detect long-range chromatin interactions. Methods Mol Biol 1933:441–472. https://doi.org/10.1007/978-1-4939-9045-0_28

    Article  CAS  PubMed  Google Scholar 

  15. Wingett S, Ewels P, Furlan-Magaril M et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Res 4:1310. https://doi.org/10.12688/f1000research.7334.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdennur N, Mirny LA (2020) Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36:311–316. https://doi.org/10.1093/bioinformatics/btz540

    Article  CAS  PubMed  Google Scholar 

  17. Ramírez F, Bhardwaj V, Arrigoni L et al (2018) High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun 9:189. https://doi.org/10.1038/s41467-017-02525-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lun ATL, Smyth GK (2015) diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics 16:258. https://doi.org/10.1186/s12859-015-0683-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong P, Zhong S (2020) Characterization of plant 3D chromatin architecture, in situ Hi-C library preparation, and data analysis. Methods Mol Biol 2093:147–167. https://doi.org/10.1007/978-1-0716-0179-2_11

    Article  CAS  PubMed  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee S, Bakker CR, Vitzthum C et al (2022) Pairs and Pairix: a file format and a tool for efficient storage and retrieval for Hi-C read pairs. Bioinformatics, 38:1729–1731

    Google Scholar 

  23. Imakaev M, Fudenberg G, McCord RP et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003. https://doi.org/10.1038/nmeth.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Djekidel MN, Chen Y, Zhang MQ (2018) FIND: difFerential chromatin INteractions detection using a spatial Poisson process. Genome Res 28:412–422. https://doi.org/10.1101/gr.212241.116

    Article  CAS  PubMed Central  Google Scholar 

  25. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cel 38:576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  Google Scholar 

  26. Paulsen J, Sandve GK, Gundersen S et al (2014) HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization. Bioinformatics 30:1620–1622. https://doi.org/10.1093/bioinformatics/btu082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C, Liu C, Roqueiro D et al (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–256. https://doi.org/10.1101/gr.170332.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong P, Tu X, Chu P-Y et al (2017) 3D chromatin architecture of large plant genomes determined by local a/B compartments. Mol Plant 10:1497–1509. https://doi.org/10.1016/j.molp.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Buenrostro JD, Wu B, Chang HY et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  30. Yardımcı GG, Ozadam H, Sauria MEG et al (2019) Measuring the reproducibility and quality of Hi-C data. Genome Biol 20:57. https://doi.org/10.1186/s13059-019-1658-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693. https://doi.org/10.1016/j.molcel.2014.07.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FJP-d, JES-F, and AR-C were funded by fellowships from the Consejo Nacional de Ciencia y Tecnología (CONACYT). N-HW, SF-V, and KO are funded by the Newton Advanced Fellowship (No. NAF\R1\180303) awarded to SF-V. KO is supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT, CB-2016-01/285847).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans-Wilhelm Nützmann , Selene L. Fernandez-Valverde or Katarzyna Oktaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez-de los Santos, F.J., Sotelo-Fonseca, J.E., Ramírez-Colmenero, A., Nützmann, HW., Fernandez-Valverde, S.L., Oktaba, K. (2022). Plant In Situ Hi-C Experimental Protocol and Bioinformatic Analysis. In: Pereira-Santana, A., Gamboa-Tuz, S.D., Rodríguez-Zapata, L.C. (eds) Plant Comparative Genomics. Methods in Molecular Biology, vol 2512. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2429-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2429-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2428-9

  • Online ISBN: 978-1-0716-2429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics