Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911
CrossRef
PubMed
PubMed Central
Google Scholar
Ameruoso A, Gambill L, Liu B, Villegas Kcam MC, Chappell J (2019) Brave new ‘RNA’ world—advances in RNA tools and their application for understanding and engineering biological systems. Curr Opin Syst Biol 14:32–40
CrossRef
Google Scholar
Xu X, Qi LS (2019) A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47
CAS
CrossRef
PubMed
Google Scholar
Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods 11:723–726
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nielsen AA, Voigt CA (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:763
CrossRef
PubMed
PubMed Central
Google Scholar
Kim H, Bojar D, Fussenegger M (2019) A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. Proc Natl Acad Sci USA 116:7214–7219
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kampmann M (2018) CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol 13:406–416
CAS
CrossRef
PubMed
Google Scholar
Boettcher M, Tian R, Blau JA, Markegard E, Wagner RT, Wu D, Mo X, Biton A, Zaitlen N, Fu H et al (2018) Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol 36:170–178
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo B-M, Marta E et al (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing X-H (2018) Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 9:2475
CrossRef
PubMed
PubMed Central
Google Scholar
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kurkela J, Fredman J, Salminen TA, Tyystjärvi T (2020) Revealing secrets of the enigmatic omega subunit of bacterial RNA polymerase. Mol Microbiol. https://doi.org/10.1111/mmi.14603
Lu Z, Yang S, Yuan X, Shi Y, Ouyang L, Jiang S, Yi L, Zhang G (2019) CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res 47:e40–e40
CrossRef
PubMed
PubMed Central
Google Scholar
Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG (2018) Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 9:2489
CrossRef
PubMed
PubMed Central
Google Scholar
Ho H, Fang JR, Cheung J, Wang HH (2020) Programmable CRISPR-Cas transcriptional activation in bacteria. Mol Syst Biol 16:e9427
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Villegas Kcam MC, Tsong AJ, Chappell J (2021) Rational engineering of a modular bacterial CRISPR–Cas activation platform with expanded target range. Nucleic Acids Res 49:4793–4802
CrossRef
PubMed
PubMed Central
Google Scholar
Thompson KE, Bashor CJ, Lim WA, Keating AE (2012) SYNZIP protein interaction toolbox: in Vitro and in Vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol 1:118–129
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fontana J, Dong C, Kiattisewee C, Chavali VP, Tickman BI, Carothers JM, Zalatan JG (2020) Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat Commun 11:1618
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF (2019) CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification. Cell 176:254–267.e16
CAS
CrossRef
PubMed
PubMed Central
Google Scholar