Skip to main content

Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2518))

Abstract

CRISPR-Cas regulators have provided an excellent toolbox to control gene expression due to the versatility of its components and the easy programming of the single guide RNA (sgRNA) to target DNA sequences. Included in this are CRISPR activation (CRISPRa) systems. These systems allow users to activate transcription of a target gene through the localization of transcription activation domains (ADs) near promoter elements, which in turn recruit RNA polymerase (RNAP) to turn on transcription. A variety of different CRISPRa systems have been described that vary in AD type, recruitment strategies, and CRISPR-Cas systems. Recently, a highly modular CRISPRa system was described that allows for facile exchange of ADs and CRISPR-Cas components. This allows for the creation of CRISPRa systems with unique properties, for example, ability to activate from specific positions upstream of a gene of interest. Here, we describe a protocol for designing, characterizing, and applying the modular CRISPRa system for gene activation in E. coli. We first focus on how to identify activating sites upstream of promoters and the cloning of the targeting sgRNA. We then describe how to perform a fluorescence experiment to evaluate activation of a single target site. Finally, we explain how to adapt the system to expand the target range and how to characterize the activation pattern obtained from different CRISPRa designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ameruoso A, Gambill L, Liu B, Villegas Kcam MC, Chappell J (2019) Brave new ‘RNA’ world—advances in RNA tools and their application for understanding and engineering biological systems. Curr Opin Syst Biol 14:32–40

    Article  Google Scholar 

  3. Xu X, Qi LS (2019) A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47

    Article  CAS  PubMed  Google Scholar 

  4. Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods 11:723–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nielsen AA, Voigt CA (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:763

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim H, Bojar D, Fussenegger M (2019) A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. Proc Natl Acad Sci USA 116:7214–7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kampmann M (2018) CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol 13:406–416

    Article  CAS  PubMed  Google Scholar 

  8. Boettcher M, Tian R, Blau JA, Markegard E, Wagner RT, Wu D, Mo X, Biton A, Zaitlen N, Fu H et al (2018) Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol 36:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo B-M, Marta E et al (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing X-H (2018) Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 9:2475

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurkela J, Fredman J, Salminen TA, Tyystjärvi T (2020) Revealing secrets of the enigmatic omega subunit of bacterial RNA polymerase. Mol Microbiol. https://doi.org/10.1111/mmi.14603

  15. Lu Z, Yang S, Yuan X, Shi Y, Ouyang L, Jiang S, Yi L, Zhang G (2019) CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res 47:e40–e40

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG (2018) Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 9:2489

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ho H, Fang JR, Cheung J, Wang HH (2020) Programmable CRISPR-Cas transcriptional activation in bacteria. Mol Syst Biol 16:e9427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Villegas Kcam MC, Tsong AJ, Chappell J (2021) Rational engineering of a modular bacterial CRISPR–Cas activation platform with expanded target range. Nucleic Acids Res 49:4793–4802

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thompson KE, Bashor CJ, Lim WA, Keating AE (2012) SYNZIP protein interaction toolbox: in Vitro and in Vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth Biol 1:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fontana J, Dong C, Kiattisewee C, Chavali VP, Tickman BI, Carothers JM, Zalatan JG (2020) Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat Commun 11:1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF (2019) CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification. Cell 176:254–267.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks goes to Welch Foundation [C-1982–20190330 to J.C.] and Alfred P. Sloan Research Fellowship [FG-2018-10500 to J.C.]; J.C. is an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chappell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Villegas Kcam, M.C., Chappell, J. (2022). Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics