Abstract
The digestion of chromosomes using micrococcal nuclease (MNase) enables the analysis of their fundamental structural units. For example, the digestion of eukaryotic chromatin using MNase results in laddered DNA fragments (~150 bp increment), which reflects the length of the DNA wrapped around regularly spaced nucleosomes. Here, we describe the application of MNase to examine the chromosome structure in Archaea. We used Thermococcus kodakarensis, a hyperthermophilic euryarchaeon that encodes proteins homologous to eukaryotic histones. Methods for chromosome extraction and agarose gel electrophoresis of MNase-digested DNA including small fragments (~30 bp) are also described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zaret K (2005) Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol 69:21.1.1–21.1.17. https://doi.org/10.1002/0471142727.mb2101s69
Clark DJ (2010) Nucleosome positioning, nucleosome spacing and the nucleosome code. J Biomol Struct Dyn 27(6):781–793. https://doi.org/10.1080/073911010010524945
Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579
Peeters E, Driessen RP, Werner F, Dame RT (2015) The interplay between nucleoid organization and transcription in archaeal genomes. Nat Rev Microbiol 13(6):333–341. https://doi.org/10.1038/nrmicro3467
Henneman B, van Emmerik C, van Ingen H, Dame RT (2018) Structure and function of archaeal histones. PLoS Genet 14(9):e1007582. https://doi.org/10.1371/journal.pgen.1007582
Driessen Rosalie PC, Dame Remus T (2011) Nucleoid-associated proteins in Crenarchaea. Biochem Soc Trans 39(1):116–121. https://doi.org/10.1042/bst0390116
Nalabothula N, Xi L, Bhattacharyya S, Widom J, Wang JP, Reeve JN, Santangelo TJ et al (2013) Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs. BMC Genomics 14:391. https://doi.org/10.1186/1471-2164-14-391
Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR et al (2017) Structure of histone-based chromatin in Archaea. Science 357(6351):609–612. https://doi.org/10.1126/science.aaj1849
Maruyama H, Shin M, Oda T, Matsumi R, Ohniwa RL, Itoh T, Shirahige K et al (2011) Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell 22(3):386–398. https://doi.org/10.1091/mbc.E10-08-0668
Maruyama H, Prieto EI, Nambu T, Mashimo C, Kashiwagi K, Okinaga T, Atomi H et al (2020) Different proteins mediate step-wise chromosome architectures in Thermoplasma acidophilum and Pyrobaculum calidifontis. Front Microbiol 11:1247. https://doi.org/10.3389/fmicb.2020.01247
Maruyama H, Harwood JC, Moore KM, Paszkiewicz K, Durley SC, Fukushima H, Atomi H et al (2013) An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis. EMBO Rep 14(8):711–717. https://doi.org/10.1038/embor.2013.94
Hocher A, Rojec M, Swadling JB, Esin A, Warnecke T (2019) The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. elife 8:e52542. https://doi.org/10.7554/eLife.52542
Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G et al (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. elife 1:e00078. https://doi.org/10.7554/eLife.00078
Robb FT, Place AR (1995) Media for thermophiles. In: Robb FT, Place AR (eds) Archaea: a laboratory manual -thermophiles. Cold Spring Harbor Laboratory Press, Cold Sprig Harbor, pp 167–168
Matsunaga F, Forterre P, Ishino Y, Myllykallio H (2001) In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci U S A 98(20):11152–11157. https://doi.org/10.1073/pnas.191387498
Spaans SK, van der Oost J, Kengen SW (2015) The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 19(4):741–750. https://doi.org/10.1007/s00792-015-0750-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Maruyama, H. (2022). Micrococcal Nuclease Digestion Assays for the Analysis of Chromosome Structure in Archaea. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_2
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2413-5_2
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2412-8
Online ISBN: 978-1-0716-2413-5
eBook Packages: Springer Protocols