Skip to main content

Micrococcal Nuclease Digestion Assays for the Analysis of Chromosome Structure in Archaea

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

The digestion of chromosomes using micrococcal nuclease (MNase) enables the analysis of their fundamental structural units. For example, the digestion of eukaryotic chromatin using MNase results in laddered DNA fragments (~150 bp increment), which reflects the length of the DNA wrapped around regularly spaced nucleosomes. Here, we describe the application of MNase to examine the chromosome structure in Archaea. We used Thermococcus kodakarensis, a hyperthermophilic euryarchaeon that encodes proteins homologous to eukaryotic histones. Methods for chromosome extraction and agarose gel electrophoresis of MNase-digested DNA including small fragments (~30 bp) are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaret K (2005) Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol 69:21.1.1–21.1.17. https://doi.org/10.1002/0471142727.mb2101s69

  2. Clark DJ (2010) Nucleosome positioning, nucleosome spacing and the nucleosome code. J Biomol Struct Dyn 27(6):781–793. https://doi.org/10.1080/073911010010524945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579

    Article  CAS  Google Scholar 

  4. Peeters E, Driessen RP, Werner F, Dame RT (2015) The interplay between nucleoid organization and transcription in archaeal genomes. Nat Rev Microbiol 13(6):333–341. https://doi.org/10.1038/nrmicro3467

    Article  CAS  PubMed  Google Scholar 

  5. Henneman B, van Emmerik C, van Ingen H, Dame RT (2018) Structure and function of archaeal histones. PLoS Genet 14(9):e1007582. https://doi.org/10.1371/journal.pgen.1007582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Driessen Rosalie PC, Dame Remus T (2011) Nucleoid-associated proteins in Crenarchaea. Biochem Soc Trans 39(1):116–121. https://doi.org/10.1042/bst0390116

    Article  CAS  PubMed  Google Scholar 

  7. Nalabothula N, Xi L, Bhattacharyya S, Widom J, Wang JP, Reeve JN, Santangelo TJ et al (2013) Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs. BMC Genomics 14:391. https://doi.org/10.1186/1471-2164-14-391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR et al (2017) Structure of histone-based chromatin in Archaea. Science 357(6351):609–612. https://doi.org/10.1126/science.aaj1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maruyama H, Shin M, Oda T, Matsumi R, Ohniwa RL, Itoh T, Shirahige K et al (2011) Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell 22(3):386–398. https://doi.org/10.1091/mbc.E10-08-0668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maruyama H, Prieto EI, Nambu T, Mashimo C, Kashiwagi K, Okinaga T, Atomi H et al (2020) Different proteins mediate step-wise chromosome architectures in Thermoplasma acidophilum and Pyrobaculum calidifontis. Front Microbiol 11:1247. https://doi.org/10.3389/fmicb.2020.01247

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maruyama H, Harwood JC, Moore KM, Paszkiewicz K, Durley SC, Fukushima H, Atomi H et al (2013) An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis. EMBO Rep 14(8):711–717. https://doi.org/10.1038/embor.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hocher A, Rojec M, Swadling JB, Esin A, Warnecke T (2019) The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. elife 8:e52542. https://doi.org/10.7554/eLife.52542

  13. Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G et al (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. elife 1:e00078. https://doi.org/10.7554/eLife.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robb FT, Place AR (1995) Media for thermophiles. In: Robb FT, Place AR (eds) Archaea: a laboratory manual -thermophiles. Cold Spring Harbor Laboratory Press, Cold Sprig Harbor, pp 167–168

    Google Scholar 

  15. Matsunaga F, Forterre P, Ishino Y, Myllykallio H (2001) In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci U S A 98(20):11152–11157. https://doi.org/10.1073/pnas.191387498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spaans SK, van der Oost J, Kengen SW (2015) The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 19(4):741–750. https://doi.org/10.1007/s00792-015-0750-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Maruyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maruyama, H. (2022). Micrococcal Nuclease Digestion Assays for the Analysis of Chromosome Structure in Archaea. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics