Skip to main content

Assay of Fatty Acids and Their Role in the Prevention and Treatment of COVID-19

  • Protocol
  • First Online:
Multiplex Biomarker Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2511))

Abstract

Since the emergence of COVID-19, concerted worldwide efforts have taken place to minimize global spread of the contagion. Its widespread effects have also facilitated evolution of new strains, such as the delta and omicron variants, which emerged toward the end of 2020 and 2021, respectively. While these variants appear to be no more deadly than the previous alpha, beta, and gamma strains, and widespread population vaccinations notwithstanding, greater virulence makes the challenge of minimizing spread even greater. One of the peculiarities of this virus is the extreme heath impacts, with the great majority of individuals minimally affected, even sometimes unaware of infection, while for a small minority, it is deadly or produces diverse long-term effects. Apart from vaccination, another approach has been an attempt to identify treatments, for those individuals for whom the virus represents a threat of particularly severe health impact(s). These treatments include anti-SARS-CoV-2 monoclonal antibodies, anticoagulant therapies, interleukin inhibitors, and anti-viral agents such as remdesivir. Nutritional factors are also under consideration, and a variety of clinical trials are showing promise for the use of specific fatty acids, or related compounds such as fat-soluble steroid vitamin D, to mitigate the more lethal aspects of COVID-19 by modulating inflammation and by anti-viral effects. Here we explore the potential protective role of fatty acids as a potential prophylactic as well as remedial treatment during viral infections, particularly COVID-19. We present a multiplexed method for the analysis of free and phospholipid bound fatty acids, which may facilitate research into the role of fatty acids as plasma biomarkers and therapeutic agents in minimizing pre- and post-infection health impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432(7019):904–906

    Article  CAS  Google Scholar 

  2. Biggerstaff M, Cauchemez S, Reed C et al (2014) Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis 14:480. https://doi.org/10.1186/1471-2334-14-480

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12(1):15–22

    Article  Google Scholar 

  4. Report of the Review Committee on the Functioning of the International Health Regulations (2005) In relation to Pandemic (H1N1) 2009. 5 May 2011, p 37. https://www.who.int/teams/ihr/ihr-review-committees/covid-19

  5. Michaelis M, Doerr HW, Cinatl J Jr (2009) Novel swine-origin influenza a virus in humans: another pandemic knocking at the door. Med Microbiol Immunol 198(3):175–183

    Article  Google Scholar 

  6. Doshi P (2008) Trends in recorded influenza mortality: United States, 1900-2004. Am J Public Health 98(5):939–945

    Article  Google Scholar 

  7. How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774. Business Insider, (20 February 2020). https://www.businessinsider.com.au/deadly-sars-virus-history-2003-in-photos-2020-2

  8. Chowell G, Castillo-Chavez C, Fenimore PW et al (2004) Model parameters and outbreak control for SARS. Emerg Infect Dis 10(7):1258–1263

    Article  Google Scholar 

  9. Donaldson LJ, Rutter PD, Ellis BM et al (2009) Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study. BMJ 339:b5213. https://doi.org/10.1136/bmj.b5213

    Article  PubMed  PubMed Central  Google Scholar 

  10. First Global Estimates of 2009 H1N1 Pandemic Mortality Released by CDC-Led Collaboration. Centers for Disease Control and Prevention (CDC), (25 June 2012. Retrieved 7 July 2012). https://www.cdc.gov/flu/spotlights/pandemic-global-estimates.htm

  11. Kelly H, Peck HA, Laurie KL et al (2011) The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countries prior to vaccination. PLoS One 6(8):e21828. https://doi.org/10.1371/journal.pone.0021828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dawood FS, Luliano AD, Reed C et al (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 12(9):687–695

    Article  Google Scholar 

  13. Nsubuga RN, White RG, Mayanja BN et al (2014) Estimation of the HIV basic reproduction number in rural South West Uganda: 1991-2008. PLoS One 9(1):e83778. https://doi.org/10.1371/journal.pone.0083778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. https://www.unaids.org/en/resources/fact-sheet

  15. Anis O (2019) Western African Ebola virus epidemic. Wiki J Med 6(1). https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Western_African_Ebola_virus_epidemic

  16. Callaway E (2016) Hunt for Ebola's wild hideout takes off as epidemic wanes. Nature 529(7585):138–139

    Article  CAS  Google Scholar 

  17. Althaus CL (2014) Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. PLoS Curr 6. https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288

  18. Suseelan BB, Moa A (2020) Global outbreaks of zika infection by epidemic observatory (EpiWATCH), 2016-2019. Glob Biosecurity 2(1). https://doi.org/10.31646/gbio.83

  19. Towers S, Brauer F, Castillo-Chavez C et al (2016) Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics 17:50–55

    Article  Google Scholar 

  20. https://www.worldometers.info/coronavirus/

  21. Locatelli I, Trachsel B, Rousson V (2021) Estimating the basic reproduction number for COVID-19 in Western Europe. PLoS One 16(3):e0248731. https://doi.org/10.1371/journal.pone.0248731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  23. Waterman SH, Gubler DJ (1989) Dengue fever. Clin Dermatol 7(1):117–122

    Article  CAS  Google Scholar 

  24. Chowell G, Diaz-Duenas P, Miller JC et al (2007) Estimation of the reproduction number of dengue fever from spatial epidemic data. Math Biosci 208(2):571–589

    Article  CAS  Google Scholar 

  25. Menachemi N, Dixon B, Wools-Kaloustian K et al (2021) How many SARS-CoV-2-infected people require hospitalization? Using random sample testing to better inform preparedness efforts. J Public Health Manag Pract 27(3):246–250

    Article  Google Scholar 

  26. Ripon M, Bhowmik D, Amin M et al (2021) Role of arachidonic cascade in COVID-19 infection: a review. Prostaglandins Other Lipid Mediat 154:106539. https://doi.org/10.1016/j.prostaglandins.2021.106539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ragab D, Salah Eldhin H, Taeimah M et al (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11:1446. https://doi.org/10.3389/fimmu.2020.01446

  28. Nguyen M, Bourredjem A, Piroth L et al (2021) High plasma concentration of non-esterified polyunsaturated fatty acids is a specific feature of severe COVID-19 pneumonia. Sci Rep 11(1):10824. https://doi.org/10.1038/s41598-021-90362-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Torres I, Guarner-Lans V, Soria-Castro E et al (2021) Alteration in the lipid profile and the desaturases activity in patients with severe pneumonia by SARS-CoV-2. Front Physiol 12:667024. https://doi.org/10.3389/fphys.2021.667024

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thomas T, Stefanoni D, Dzieciatkowska M et al (2020) Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J Proteome Res 19(11):4455–4469

    Article  CAS  Google Scholar 

  31. Ragab D, Salah Eldhin H, Taeimah M et al (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11:1446. https://doi.org/10.3389/fimmu.2020.01446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asher A, Tintle NL, Myers M et al (2021) Blood omega-3 fatty acids and death from COVID-19: a pilot study. Prostaglandins Leukot Essent Fatty Acids 166:102250. https://doi.org/10.1016/j.plefa.2021.102250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang S, Tanaka T, Inoue H et al (2020) IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A 117(36):22351–22356

    Article  CAS  Google Scholar 

  34. Sillen M, Declerck PJ (2020) A narrative review on plasminogen activator Inhibitor-1 and its (Patho)physiological role: to target or not to target? Int J Mol Sci 22(5):2721. https://doi.org/10.3390/ijms22052721

    Article  CAS  Google Scholar 

  35. Del Valle DM, Kim-Schulze S, Huang HH et al (2020) An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 26(10):1636–1643

    Article  Google Scholar 

  36. Tsantes AE, Frantzeskaki F, Tasantes AG et al (2020) The haemostatic profile in critically ill COVID-19 patients receiving therapeutic anticoagulant therapy: an observational study. Medicine (Baltimore) 99(47):e23365. https://doi.org/10.1097/MD.0000000000023365

    Article  CAS  Google Scholar 

  37. Sudre CH, Murray B, Varsavsky T et al (2021) Attributes and predictors of long COVID. Nat Med 27(4):626–631

    Article  CAS  Google Scholar 

  38. https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-health-advice-public/long-covid

  39. Liu Y, Pan Y, Yin Y et al (2021) Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): a meta-analysis. Virol J 18(1):157. https://doi.org/10.1186/s12985-021-01604-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patel KHK, Ki X, Quint JK et al (2021) Increasing adiposity and the presence of cardiometabolic morbidity is associated with increased Covid-19-related mortality: results from the UK biobank. BMC Endocr Disord 21(1):144. https://doi.org/10.1186/s12902-021-00805-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dai W, Lund H, Chen Y et al (2021) Hypertriglyceridemia during hospitalization independently associates with mortality in patients with COVID-19. J Clin Lipidol 15:S1933-2874(21)00122-72021. https://doi.org/10.1016/j.jacl.2021.08.002. Online ahead of print

    Article  Google Scholar 

  42. Ribeiro HG, Dantas-Komatsu RCS, Medeiros JFP et al (2021) Previous vitamin D status and total cholesterol are associated with SARS-CoV-2 infection. Clin Chim Acta 522:8–13

    Article  CAS  Google Scholar 

  43. Brennan E, Kantharidis P, Cooper ME et al (2021) Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 17(11):725–739

    Article  CAS  Google Scholar 

  44. Arnardottir H, Pawelzik SC, Artiach G et al (2020) Stimulating the resolution of inflammation through Omega-3 polyunsaturated fatty acids in COVID-19: rationale for the COVID-omega-F trial. Front Physiol 11:624657. https://doi.org/10.3389/fphys.2020.624657

    Article  PubMed  Google Scholar 

  45. Thomas T, Stefanoni D, Reisz JA et al (2020) COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI. Insight 5(14). https://doi.org/10.1172/jci.insight.140327

  46. Hoxha M (2020) What about COVID-19 and arachidonic acid pathway? Eur J Clin Pharmacol 76(11):1501–1504

    Article  CAS  Google Scholar 

  47. Archambault AS, Zaid Y, Rakotoarivelo V et al (2021) High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB J 35(6):e21666. https://doi.org/10.1096/fj.202100540R

    Article  CAS  PubMed  Google Scholar 

  48. Zaid Y, Dore E, Dubuc I et al (2021) Chemokines and eicosanoids fuel the hyperinflammation within the lungs of patients with severe COVID-19. J Allergy Clin Immunol 148(2):368–380 e3

    Article  CAS  Google Scholar 

  49. Hathaway D, Pandav K, Patel M et al (2020) Omega 3 fatty acids and COVID-19: a comprehensive review. Infect Chemother 52(4):478–495

    Article  Google Scholar 

  50. Quehenberger O, Armando AM, Brown AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305

    Article  CAS  Google Scholar 

  51. Quehenberger O, Armando AM, Dennis EA (2011) High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta 1811(11):648–656

    Article  CAS  Google Scholar 

  52. Sachdev PS, Brodaty H, Reppermund S et al (2010) The Sydney Memory and Ageing Study (MAS): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70-90 years. Int Psychogeriatr 22(8):1248–1264

    Article  Google Scholar 

  53. Kawahara FK (1968) Microdetermination of derivatives of phenols and mercaptans by means of electron capture gas chromatography. Anal Chem 40(6):1009–1010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tharusha Jayasena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jayasena, T., Bustamante, S., Poljak, A., Sachdev, P. (2022). Assay of Fatty Acids and Their Role in the Prevention and Treatment of COVID-19. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 2511. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2395-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2395-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2394-7

  • Online ISBN: 978-1-0716-2395-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics