Skip to main content

Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System

  • Protocol
  • First Online:
piRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2509))

Abstract

Transposable elements (TEs) constitute a large proportion of the genome in multiple organisms. Therefore, anti-transposable element machineries are essential to maintain genomic integrity. PIWI-interacting RNAs (piRNAs) are a major force to repress TEs in Drosophila ovaries. Ovarian somatic cells (OSC), in which nuclear piRNA regulation is functional, have been used for research on piRNA pathway as a cell culture system to elucidate the molecular mechanisms underlying the piRNA pathway. Analysis of piRNA pathway using a reporter system to monitor the gene regulation or overexpression of specific genes would be a powerful approach. Here, we present the technical protocol to establish stable cell lines using the piggyBac system, adopted for OSCs. This easy, consistent, and timesaving protocol may accelerate research on the piRNA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 170.49
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 241.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20(2):89–108. https://doi.org/10.1038/s41576-018-0073-3

    Article  CAS  PubMed  Google Scholar 

  2. Iwasaki YW, Siomi MC, Siomi H (2015) PIWI-interacting RNA: its biogenesis and functions. Annu Rev Biochem 84:405–433. https://doi.org/10.1146/annurev-biochem-060614-034258

    Article  CAS  PubMed  Google Scholar 

  3. Senti KA, Brennecke J (2010) The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet 26(12):499–509. https://doi.org/10.1016/j.tig.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niki Y, Yamaguchi T, Mahowald AP (2006) Establishment of stable cell lines of Drosophila germ-line stem cells. Proc Natl Acad Sci U S A 103(44):16325–16330. https://doi.org/10.1073/pnas.0607435103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, Siomi MC (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in drosophila. Nature 461(7268):1296–1299. https://doi.org/10.1038/nature08501

    Article  CAS  PubMed  Google Scholar 

  6. Saito K (2014) RNAi and overexpression of genes in ovarian somatic cells. Methods Mol Biol 1093:25–33. https://doi.org/10.1007/978-1-62703-694-8_3

    Article  CAS  PubMed  Google Scholar 

  7. Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H (2019) Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 38(17):e102870. https://doi.org/10.15252/embj.2019102870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169. https://doi.org/10.1016/0042-6822(89)90117-7

    Article  CAS  PubMed  Google Scholar 

  9. Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211(2):397–407. https://doi.org/10.1006/viro.1995.1422

    Article  CAS  PubMed  Google Scholar 

  10. Chen K, Birkinshaw RW, Gurzau AD, Wanigasuriya I, Wang R, Iminitoff M, Sandow JJ, Young SN, Hennessy PJ, Willson TA, Heckmann DA, Webb AI, Blewitt ME, Czabotar PE, Murphy JM (2020) Crystal structure of the hinge domain of Smchd1 reveals its dimerization mode and nucleic acid-binding residues. Sci Signal 13(636):eaaz5599. https://doi.org/10.1126/scisignal.aaz5599

    Article  CAS  PubMed  Google Scholar 

  11. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483. https://doi.org/10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  12. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108(4):1531–1536. https://doi.org/10.1073/pnas.1008322108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishizu H, Sumiyoshi T, Siomi MC (2017) Use of the CRISPR-Cas9 system for genome editing in cultured drosophila ovarian somatic cells. Methods 126:186–192. https://doi.org/10.1016/j.ymeth.2017.05.021

    Article  CAS  PubMed  Google Scholar 

  14. Batki J, Schnabl J, Wang J, Handler D, Andreev VI, Stieger CE, Novatchkova M, Lampersberger L, Kauneckaite K, Xie W, Mechtler K, Patel DJ, Brennecke J (2019) The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat Struct Mol Biol 26(8):720–731. https://doi.org/10.1038/s41594-019-0270-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishii T, Ishikawa M, Fujimori K, Maeda T, Kushima I, Arioka Y, Mori D, Nakatake Y, Yamagata B, Nio S, Kato TA, Yang N, Wernig M, Kanba S, Mimura M, Ozaki N, Okano H (2019) In vitro modeling of the bipolar disorder and schizophrenia using patient-derived induced pluripotent stem cells with copy number variations of PCDH15 and RELN. eNeuro 6(5):ENEURO.0403-0418. https://doi.org/10.1523/eneuro.0403-18.2019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Haruhiko Siomi for the critical reading of the manuscript. OSC_Reporter_UAS_traffic jam_BoxB_d2eGFP_t2a_Blast, used for construction of donor plasmid, was a kind gift from Dr. Julius Brennecke (Addgene plasmid # 128010; http://n2t.net/addgene:128010; RRID:Addgene_128010). YWI is supported by funding from JSPS KAKENHI Grant Numbers 22H02547, 21H00259 and 18H02421, JST PRESTO Grant Number JPMJPR20E2. KM is supported by funding from JSPS KAKENHI Grant Number 20H03439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuka W. Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takeuchi, C., Murano, K., Ishikawa, M., Okano, H., Iwasaki, Y.W. (2022). Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System. In: Parrish, N.F., Iwasaki, Y.W. (eds) piRNA. Methods in Molecular Biology, vol 2509. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2380-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2380-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2379-4

  • Online ISBN: 978-1-0716-2380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics