Skip to main content

Sequences to Differences in Gene Expression: Analysis of RNA-Seq Data

  • Protocol
  • First Online:
Cancer Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2508))

Abstract

RNA-Seq is now a routinely employed assay to measure gene expression. As the technique matured over the last decade, so have dedicated analytic tools. In this chapter, we first describe the mainstream as well as the most up-to-date protocols and their implications on downstream analysis. We then detail the steps entailing RNA-Seq analysis in three main stages: (i) preprocessing and data preparation, (ii) upstream processing, and (iii) high-level analyses. We review the most recent and relevant tools as one workflow following a stepwise order. The chapter further encompasses in-depth features of these tools. Details of the required code are made available throughout the chapter, as well as of the underlying statistics. We illustrate these steps with analysis of publicly available RNA-Seq data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buratowski S (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36(4):541–546. https://doi.org/10.1016/j.molcel.2009.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franzen O, Jerlstrom-Hultqvist J, Einarsson E, Ankarklev J, Ferella M, Andersson B, Svard SG (2013) Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput Biol 9(3):e1003000. https://doi.org/10.1371/journal.pcbi.1003000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer M, Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010(6):pdb.prot5448. https://doi.org/10.1101/pdb.prot5448

    Article  PubMed  Google Scholar 

  4. Antonio Urrutia G, Ramachandran H, Cauchy P, Boo K, Ramamoorthy S, Boller S, Dogan E, Clapes T, Trompouki E, Torres-Padilla ME, Palvimo JJ, Pichler A, Grosschedl R (2021) ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes Dev 35(15–16):1142–1160. https://doi.org/10.1101/gad.345843.120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao S, Zhang Y, Gamini R, Zhang B, von Schack D (2018) Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion. Sci Rep 8(1):4781. https://doi.org/10.1038/s41598-018-23226-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM (2014) Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15:419. https://doi.org/10.1186/1471-2164-15-419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei C-L, Ruan Y (2008) Multiplex sequencing of paired end ditags for transcriptome and genome analysis. In: Next generation genome sequencing. Wiley, pp 165–182. https://doi.org/10.1002/9783527625130.ch13

    Chapter  Google Scholar 

  8. Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7(9):709–715. https://doi.org/10.1038/nmeth.1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao S, Zhang Y, Gordon W, Quan J, Xi H, Du S, von Schack D, Zhang B (2015) Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics 16:675. https://doi.org/10.1186/s12864-015-1876-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agarwal S, Macfarlan TS, Sartor MA, Iwase S (2015) Sequencing of first-strand cDNA library reveals full-length transcriptomes. Nat Commun 6:6002. https://doi.org/10.1038/ncomms7002

    Article  CAS  PubMed  Google Scholar 

  11. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj V, Heyne S, Sikora K, Rabbani L, Rauer M, Kilpert F, Richter AS, Ryan DP, Manke T (2019) snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics 35(22):4757–4759. https://doi.org/10.1093/bioinformatics/btz436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woste M, Leitao E, Laurentino S, Horsthemke B, Rahmann S, Schroder C (2020) wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data. BMC Bioinformatics 21(1):169. https://doi.org/10.1186/s12859-020-3470-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yukselen O, Turkyilmaz O, Ozturk AR, Garber M, Kucukural A (2020) DolphinNext: a distributed data processing platform for high throughput genomics. BMC Genomics 21(1):310. https://doi.org/10.1186/s12864-020-6714-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Gruning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  17. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Github

    Google Scholar 

  18. Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42(Web Server issue):W187–W191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  22. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):3. https://doi.org/10.2202/1544-6115.1027

    Article  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):3. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  26. Krueger F (2016) Trim Galore! Github. https://doi.org/10.5281/zenodo.5127898

    Book  Google Scholar 

  27. Amemiya HM, Kundaje A, Boyle AP (2019) The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep 9(1):9354. https://doi.org/10.1038/s41598-019-45839-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R, Gut M, Gut I, Santana MA, Griffon A, Imbert J, Moraes-Cabe C, Bories JC, Ferrier P, Spicuglia S, Andrau JC (2016) Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res 44(8):3567–3585. https://doi.org/10.1093/nar/gkv1475

    Article  CAS  PubMed  Google Scholar 

  29. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    Article  CAS  Google Scholar 

  30. Benelli M, Pescucci C, Marseglia G, Severgnini M, Torricelli F, Magi A (2012) Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics 28(24):3232–3239. https://doi.org/10.1093/bioinformatics/bts617

    Article  CAS  PubMed  Google Scholar 

  31. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, Goldman N, Hubbard TJ, Harrow J, Guigo R, Bertone P (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10(12):1185–1191. https://doi.org/10.1038/nmeth.2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye H, Meehan J, Tong W, Hong H (2015) Alignment of short reads: a crucial step for application of next-generation sequencing data in precision medicine. Pharmaceutics 7(4):523–541. https://doi.org/10.3390/pharmaceutics7040523

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10):e108. https://doi.org/10.1093/nar/gkt214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8):e47. https://doi.org/10.1093/nar/gkz114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang S, Zhang J, Li R, Zhang W, He Z, Lam TW, Peng Z, Yiu SM (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq data. Front Genet 2:46. https://doi.org/10.3389/fgene.2011.00046

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881. https://doi.org/10.1093/bioinformatics/btq057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veeneman BA, Shukla S, Dhanasekaran SM, Chinnaiyan AM, Nesvizhskii AI (2016) Two-pass alignment improves novel splice junction quantification. Bioinformatics 32(1):43–49. https://doi.org/10.1093/bioinformatics/btv642

    Article  CAS  PubMed  Google Scholar 

  40. Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.11–11.14.19. https://doi.org/10.1002/0471250953.bi1114s51

    Article  Google Scholar 

  41. Klepikova AV, Kasianov AS, Chesnokov MS, Lazarevich NL, Penin AA, Logacheva M (2017) Effect of method of deduplication on estimation of differential gene expression using RNA-seq. PeerJ 5:e3091. https://doi.org/10.7717/peerj.3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858. https://doi.org/10.1101/gr.078212.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribeiro A, Golicz A, Hackett CA, Milne I, Stephen G, Marshall D, Flavell AJ, Bayer M (2015) An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome. BMC Bioinformatics 16:382. https://doi.org/10.1186/s12859-015-0801-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tourriere H, Chebli K, Tazi J (2002) mRNA degradation machines in eukaryotic cells. Biochimie 84(8):821–837. https://doi.org/10.1016/s0300-9084(02)01445-1

    Article  CAS  PubMed  Google Scholar 

  48. Edginton-White B, Cauchy P, Assi SA, Hartmann S, Riggs AG, Mathas S, Cockerill PN, Bonifer C (2019) Global long terminal repeat activation participates in establishing the unique gene expression programme of classical Hodgkin lymphoma. Leukemia 33(6):1463–1474. https://doi.org/10.1038/s41375-018-0311-x

    Article  CAS  PubMed  Google Scholar 

  49. Ren X, Kuan PF (2020) Negative binomial additive model for RNA-Seq data analysis. BMC Bioinformatics 21(1):171. https://doi.org/10.1186/s12859-020-3506-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  51. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. https://doi.org/10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  52. Durbin BP, Hardin JS, Hawkins DM, Rocke DM (2002) A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18(suppl_1):S105–S110. https://doi.org/10.1093/bioinformatics/18.suppl_1.S105

    Article  PubMed  Google Scholar 

  53. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6):882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (N Y) 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  Google Scholar 

  55. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  56. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, Melius J, Cirillo E, Coort SL, Digles D, Ehrhart F, Giesbertz P, Kalafati M, Martens M, Miller R, Nishida K, Rieswijk L, Waagmeester A, Eijssen LMT, Evelo CT, Pico AR, Willighagen EL (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46(D1):D661–D667. https://doi.org/10.1093/nar/gkx1064

    Article  CAS  PubMed  Google Scholar 

  57. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A (2021) Fast gene set enrichment analysis. bioRxiv:060012. https://doi.org/10.1101/060012

  58. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344. https://doi.org/10.1016/j.stem.2008.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600. https://doi.org/10.1126/science.1072530

    Article  CAS  PubMed  Google Scholar 

  60. Tamayo P, Scanfeld D, Ebert BL, Gillette MA, Roberts CW, Mesirov JP (2007) Metagene projection for cross-platform, cross-species characterization of global transcriptional states. Proc Natl Acad Sci U S A 104(14):5959–5964. https://doi.org/10.1073/pnas.0701068104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21. https://doi.org/10.1093/nar/gkq1019

    Article  CAS  PubMed  Google Scholar 

  63. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7(12):1009–1015. https://doi.org/10.1038/nmeth.1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017. https://doi.org/10.1101/gr.133744.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cauchy P, James SR, Zacarias-Cabeza J, Ptasinska A, Imperato MR, Assi SA, Piper J, Canestraro M, Hoogenkamp M, Raghavan M, Loke J, Akiki S, Clokie SJ, Richards SJ, Westhead DR, Griffiths MJ, Ott S, Bonifer C, Cockerill PN (2015) Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep 12(5):821–836. https://doi.org/10.1016/j.celrep.2015.06.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Obier N, Cauchy P, Assi SA, Gilmour J, Lie ALM, Lichtinger M, Hoogenkamp M, Noailles L, Cockerill PN, Lacaud G, Kouskoff V, Bonifer C (2016) Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development 143(23):4324–4340. https://doi.org/10.1242/dev.139857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kreher S, Bouhlel MA, Cauchy P, Lamprecht B, Li S, Grau M, Hummel F, Kochert K, Anagnostopoulos I, Johrens K, Hummel M, Hiscott J, Wenzel SS, Lenz P, Schneider M, Kuppers R, Scheidereit C, Giefing M, Siebert R, Rajewsky K, Lenz G, Cockerill PN, Janz M, Dorken B, Bonifer C, Mathas S (2014) Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 111(42):E4513–E4522. https://doi.org/10.1073/pnas.1406985111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, Aksoy BA, Liu EM, Shen R, Lee W, Chen Y, Stirdivant SM, Russo P, Chen YB, Tickoo SK, Reuter VE, Cheng EH, Sander C, Hsieh JJ (2016) An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29(1):104–116. https://doi.org/10.1016/j.ccell.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schönberger K, Obier N, Romero-Mulero MC, Cauchy P, Mess J, Pavlovich PV, Zhang YW, Mitterer M, Rettkowski J, Lalioti M-E, Jäcklein K, Curtis JD, Féret B, Sommerkamp P, Morganti C, Ito K, Ghyselinck NB, Trompouki E, Buescher JM, Pearce EL, Cabezas-Wallscheid N (2021) Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell 29:1–18. https://doi.org/10.1016/j.stem.2021.10.002

    Article  CAS  Google Scholar 

  70. Pease J, Sooknanan R (2012) A rapid, directional RNA-seq library preparation workflow for IlluminaÛ sequencing. Nat Methods 9(3):i–ii. https://doi.org/10.1038/nmeth.f.355

Download references

Acknowledgment

This work was supported by the Max Planck Society and the German Cancer Research Centre (DKFZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cauchy .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Annex 1

Bash code for upstream processing (DOCX 27 kb)

Annex 2

R code for downstream analyses (DOCX 23 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pavlovich, P.V., Cauchy, P. (2022). Sequences to Differences in Gene Expression: Analysis of RNA-Seq Data. In: Christian, S.L. (eds) Cancer Cell Biology. Methods in Molecular Biology, vol 2508. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2376-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2376-3_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2375-6

  • Online ISBN: 978-1-0716-2376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics