Skip to main content

Studying Iridoid Transport in Catharanthus roseus by Grafting

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

Abstract

The plant Catharanthus roseus is well known for its spatial separation of iridoid and monoterpenoid indole alkaloid (MIA) biosynthesis at both intracellular and intercellular levels, collectively suggested by RNA in situ hybridization, enzymatic and transcriptomic studies using leaf epidermis, and fluorescent protein tagging studies. Although documented in other plant species, the long-distance transport of iridoid glycosides, such as secologanin, has not been known in C. roseus until a recent study suggested that secologanin is transported from root to shoot, by grafting low iridoid/MIA mutant scions onto wild-type stock plants. This chapter describes the in vitro cultivation of C. roseus plants and grafting techniques to enable studies concerning iridoid/MIA transport between organs. The iridoid and MIA analysis methods are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D, Rischer H, Goossens A, Oksman-Caldentey KM, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci U S A 106:2447–2452. https://doi.org/10.1073/pnas.0812512106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Courdavault V, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol 19:43–50. https://doi.org/10.1016/j.pbi.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  3. St-Pierre B, Vazquez-Flota F, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11(5):887–900. https://doi.org/10.1105/tpc.11.5.887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J 53(2):225–236. https://doi.org/10.1111/j.1365-313X.2007.03337.x

    Article  CAS  PubMed  Google Scholar 

  5. Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44(4):581–594. https://doi.org/10.1111/j.1365-313X.2005.02557.x

    Article  CAS  PubMed  Google Scholar 

  6. Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20(3):524–542. https://doi.org/10.1105/tpc.107.056630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Payne RME, Xu D, Foureau E, Carqueijeiro MIST, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3(2):1–9. https://doi.org/10.1038/nplants.2016.208

    Article  CAS  Google Scholar 

  8. Stavrinides A, Tatsis EC, Caputi L, Foureau E, Stevenson CEM, Lawson DM, Courdavault V, O’Connor SE (2016) Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nat Commun 7(1):1–14. https://doi.org/10.1038/ncomms12116

    Article  CAS  Google Scholar 

  9. Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10(1):1–20. https://doi.org/10.1186/1471-2229-10-182

    Article  CAS  Google Scholar 

  10. Qu Y, Easson MLAE, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 112(19):6224–6229. https://doi.org/10.1073/pnas.1501821112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci U S A 110(39):15830–15835. https://doi.org/10.1073/pnas.1307504110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abouzeid S, Hijazin T, Lewerenz L, Hänsch R, Selmar D (2019) The genuine localization of indole alkaloids in Vinca minor and Catharanthus roseus. Phytochemistry 168:112110. https://doi.org/10.1016/j.phytochem.2019.112110

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto K, Takahashi K, Caputi L, Mizuno H, Rodriguez-Lopez CE, Iwasaki T, Ishizaki K, Fukaki H, Ohnishi M, Yamazaki M, Masujima T (2019) The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics. New Phytol 224(2):848–859. https://doi.org/10.1111/nph.16138

    Article  CAS  PubMed  Google Scholar 

  14. Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O’Connor SE, Goossens A, Halkier BA (2017) Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Physiol 58(9):1507–1518. https://doi.org/10.1093/pcp/pcx097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kidd T, Easson MLAE, Qu Y, De Luca V (2019) Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Phytochemistry 159:119–126. https://doi.org/10.1016/j.phytochem.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  16. Gowan E, Lewis BA, Turgeon R (1995) Phloem transport of antirrhinoside, an iridoid glycoside, in Asarina scandens (Scrophulariaceae). J Chem Ecol 21(11):1781–1788. https://doi.org/10.1007/BF02033676

    Article  CAS  PubMed  Google Scholar 

  17. Beninger CW, Cloutier RR, Monteiro MA, Grodzinski B (2007) The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development. J Chem Ecol 33(4):731–747. https://doi.org/10.1007/s10886-007-9253-x

    Article  CAS  PubMed  Google Scholar 

  18. Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Bossche RV, Miettinen K, Espoz J, Purnama PC, Kellner F (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci U S A 112(26):8130–8135. https://doi.org/10.1073/pnas.1504951112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Moerkercke A, Steensma P, Gariboldi I, Espoz J, Purnama PC, Schweizer F, Miettinen K, Vanden Bossche R, De Clercq R, Memelink J, Goossens A (2016) The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J 88(1):3–12. https://doi.org/10.1111/tpj.13230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by an NSERC Discovery Grant to YQ and an NSERC Discovery Grant to VDL. We thank Dr. Alan Blowers and colleagues from Ball Horticultural Company for preparing the M2-mutant seeds. YQ is supported by a Cannabis Health Research Chair (New Brunswick Health Research Foundation/Tetra Bio Pharma Inc.). VDL is supported by an NSERC Tier 1 Canada Research Chair in Plant Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farzana, M., Shahsavarani, M., De Luca, V., Qu, Y. (2022). Studying Iridoid Transport in Catharanthus roseus by Grafting. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics