Skip to main content

Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus

  • Protocol
  • First Online:
Catharanthus roseus

Abstract

Biosynthesis of the therapeutically valuable terpenoid indole alkaloids (TIAs), in the medicinal plant Catharanthus roseus, is one of the most elaborate and complex metabolic processes. Although genomic and transcriptomic resources have significantly accelerated gene discovery in the TIA pathway, relatively few genes of transcription factors (TFs) have been identified and characterized thus far. Systematic identification of TFs and elucidation of their functions are crucial for understanding TIA pathway regulation. The successful discovery of TFs in the TIA pathway has relied mostly on three different approaches, (1) identification of cis-regulatory motifs (CRMs) present in the pathway gene promoters as they often provide clues on potential TFs that bind to the promoters, (2) co-expression analysis, based on the assumption that TFs regulating a metabolic or developmental pathway exhibit similar spatiotemporal expression as the pathway genes, and (3) isolation of homologs of TFs known to regulate structurally similar or diverse specialized metabolites in different plant species. TFs regulating TIA pathway have been isolated using either an individual or a combination of the three approaches. Here we describe transcriptome-based coexpression analysis and cis-element determination to identify TFs in C. roseus. In addition, we describe the protocols for generation of transgenic hairy roots, Agrobacterium infiltration of flowers, and electrophoretic mobility shift assay (EMSA). The methods described here are useful for the identification and characterization of potential TFs involved in the regulation of special metabolism in other medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galbiati M, Moreno MA, Nadzan G, Zourelidou M, Dellaporta SL (2000) Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis. Funct Integr Genomics 1(1):25–34. https://doi.org/10.1007/s101420000007

    Article  CAS  PubMed  Google Scholar 

  2. Memelink J (2003) T-DNA activation tagging. Methods Mol Biol 236:345–362. https://doi.org/10.1385/1-59259-413-1:345

    Article  CAS  PubMed  Google Scholar 

  3. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122(4):1003–1013. https://doi.org/10.1104/pp.122.4.1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16(12):3599–3608. https://doi.org/10.1093/emboj/16.12.3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354(6312). https://doi.org/10.1126/science.aag1550

  6. Klomp JA, Furge KA (2012) Genome-wide matching of genes to cellular roles using guilt-by-association models derived from single sample analysis. BMC Res Notes 5:370. https://doi.org/10.1186/1756-0500-5-370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Z, Patra B, Li R, Pattanaik S, Yuan L (2013) Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus. Planta 238(6):1039–1049. https://doi.org/10.1007/s00425-013-1949-2

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L (2019) GATA and phytochrome interacting factor transcription factors regulate light-induced vindoline biosynthesis in Catharanthus roseus. Plant Physiol 180(3):1336–1350. https://doi.org/10.1104/pp.19.00489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769(2):139–148. https://doi.org/10.1016/j.bbaexp.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463. https://doi.org/10.1093/emboj/18.16.4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 1829(11):1236–1247. https://doi.org/10.1016/j.bbagrm.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Shoji T, Hashimoto T (2011) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52(6):1117–1130. https://doi.org/10.1093/pcp/pcr063

    Article  CAS  PubMed  Google Scholar 

  13. Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22(10):3390–3409. https://doi.org/10.1105/tpc.110.078543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654. https://doi.org/10.1038/ncomms10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, Mori T, Kawamoto K, Nakamura Y, Katayama M, Nonaka S, Matsukura C, Yano K, Ezura H, Saito K, Hashimoto T, Shoji T (2016) Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol 57(5):961–975. https://doi.org/10.1093/pcp/pcw067

    Article  CAS  PubMed  Google Scholar 

  16. Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198(4):1191–1202. https://doi.org/10.1111/nph.12207

    Article  CAS  PubMed  Google Scholar 

  17. Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K (2016) The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210(4):1269–1281. https://doi.org/10.1111/nph.13874

    Article  CAS  PubMed  Google Scholar 

  18. Paul P, Singh SK, Patra B, Liu X, Pattanaik S, Yuan L (2020) Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in plants. Plant Physiol 182(2):840–856. https://doi.org/10.1104/pp.19.00772

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67(1):61–71. https://doi.org/10.1111/j.1365-313X.2011.04575.x

    Article  CAS  PubMed  Google Scholar 

  20. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297. https://doi.org/10.1126/science.289.5477.295

    Article  PubMed  Google Scholar 

  21. Colinas M, Pollier J, Vaneechoutte D, Malat DG, Schweizer F, De Milde L, De Clercq R, Guedes JG, Martinaez-Cotes T, Molina-Hidalgo FJ, Sottomayor M, Vandepoele K, Goossens A (2021) Subfunctionalization of paralog transcription factors contributes to regulation of alkaloid pathway branch choice in Catharanthus roseus. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.687406

  22. Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213(3):1107–1123. https://doi.org/10.1111/nph.14252

    Article  CAS  PubMed  Google Scholar 

  23. Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 293:110408. https://doi.org/10.1016/j.plantsci.2020.110408

    Article  CAS  PubMed  Google Scholar 

  24. Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34(4):441–449. https://doi.org/10.1016/j.biotechadv.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279(51):52940–52948. https://doi.org/10.1074/jbc.M404391200

    Article  CAS  PubMed  Google Scholar 

  26. Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol 144(3):1680–1689. https://doi.org/10.1104/pp.107.096115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157(4):2081–2093. https://doi.org/10.1104/pp.111.181834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patra B, Pattanaik S, Schluttenhofer C, Yuan L (2018) A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 217(4):1566–1581. https://doi.org/10.1111/nph.14910

    Article  CAS  PubMed  Google Scholar 

  29. Van Moerkercke A, Steensma P, Gariboldi I, Espoz J, Purnama PC, Schweizer F, Miettinen K, Vanden Bossche R, De Clercq R, Memelink J, Goossens A (2016) The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J 88(1):3–12. https://doi.org/10.1111/tpj.13230

    Article  CAS  PubMed  Google Scholar 

  30. Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Vanden Bossche R, Miettinen K, Espoz J, Purnama PC, Kellner F, Seppänen-Laakso T, O’Connor SE, Rischer H, Memelink J, Goossens A (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci 112(26):8130–8135. https://doi.org/10.1073/pnas.1504951112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2021) BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Direct 5(1):e00305. https://doi.org/10.1002/pld3.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K, Buell CR, O’Connor SE (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82(4):680–692. https://doi.org/10.1111/tpj.12827

    Article  CAS  PubMed  Google Scholar 

  33. Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Vanden Bossche R, de Clercq R, Goossens A (2018) An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metab Eng 48:150–162. https://doi.org/10.1016/j.ymben.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  34. Stavrinides A, Tatsis EC, Caputi L, Foureau E, Stevenson CE, Lawson DM, Courdavault V, O'Connor SE (2016) Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nat Commun 7:12116. https://doi.org/10.1038/ncomms12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tatsis EC, Carqueijeiro I, Duge de Bernonville T, Franke J, Dang TT, Oudin A, Lanoue A, Lafontaine F, Stavrinides AK, Clastre M, Courdavault V, O’Connor SE (2017) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 8(1):316. https://doi.org/10.1038/s41467-017-00154-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salim V, Yu F, Altarejos J, De Luca V (2013) Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76(5):754–765. https://doi.org/10.1111/tpj.12330

    Article  CAS  PubMed  Google Scholar 

  37. Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci U S A 110(39):15830–15835. https://doi.org/10.1073/pnas.1307504110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Payne RM, Xu D, Foureau E, Teto Carqueijeiro MI, Oudin A, Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Ann Halkier B, Geu-Flores F, Courdavault V, Nour-Eldin HH, O'Connor SE (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208. https://doi.org/10.1038/nplants.2016.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patra B, Liu Y, Singleton JJ, Singh SK, Pattanaik S, Yuan L (2022) Virus-induced gene silencing as a tool to study regulation of alkaloid biosynthesis in medicinal plants. Methods Mol Biol, vol. 2469, Springer Nature, New York, USA

    Google Scholar 

  40. Sui X, Singh SK, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L (2018) Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. J Exp Bot 69(18):4267–4281. https://doi.org/10.1093/jxb/ery229

    Article  CAS  PubMed  Google Scholar 

  41. Pattanaik S, Werkman JR, Kong Q, Yuan L (2010) Site-directed mutagenesis and saturation mutagenesis for the functional study of transcription factors involved in plant secondary metabolite biosynthesis. Methods Mol Biol 643:47–57. https://doi.org/10.1007/978-1-60761-723-5_4

    Article  CAS  PubMed  Google Scholar 

  42. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300. https://doi.org/10.1093/nar/27.1.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranasic D, Santana-Garcia W, Tan G, Cheneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW, Mathelier A (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed  Google Scholar 

  44. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73. https://doi.org/10.1038/nmeth.2251

    Article  CAS  PubMed  Google Scholar 

  47. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW, Mathelier A (2019) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92. https://doi.org/10.1093/nar/gkz1001

    Article  CAS  PubMed Central  Google Scholar 

  48. Nilsson O, Olsson O (1997) Getting to the root: the role of the agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100(3):463–473. https://doi.org/10.1111/j.1399-3054.1997.tb03050.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sitakanta Pattanaik or Ling Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, S.K. et al. (2022). Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics