Skip to main content

Affinity Isolation of Endogenous Saccharomyces Cerevisiae Nuclear Pore Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2502))

Abstract

Studying protein complexes in vitro requires the production of a relatively pure sample that maintains the full complement, native organization, and function of that complex. This can be particularly challenging to achieve for large, multi-component, membrane embedded complexes using the traditional recombinant expression and reconstitution methodologies. However, using affinity capture from native cells, suitable whole endogenous protein complexes can be isolated. Here we present a protocol for the affinity isolation of baker’s yeast (S. cerevisiae) nuclear pore complexes, which are ~50 MDa assemblies made up of 552 distinct proteins and embedded in a double-membraned nuclear envelope. Producing this sample allowed us for the first time to perform analyses to characterize the mass, stoichiometry, morphology, and connectivity of this complex and to obtain its integrative structure with ~9 Å precision. We believe this methodology can be applied to other challenging protein complexes to produce similar results.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555(7697):475–482. https://doi.org/10.1038/nature26003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Olinares PD, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT (2016) A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal Chem 88(5):2799–2807. https://doi.org/10.1021/acs.analchem.5b04477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. LaCava J, Fernandez-Martinez J, Rout MP (2016) Native elution of yeast protein complexes obtained by affinity capture. Cold Spring Harb Protoc 2016(7):pdb prot087940. https://doi.org/10.1101/pdb.prot087940

    Article  Google Scholar 

  4. Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R, Gagnon M, Chemmama IE, Wang J, Nudelman I, Zhang W, Williams R, Rice WJ, Stokes DL, Zenklusen D, Chait BT, Sali A, Rout MP (2016) Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167(5):1215–1228 e1225. https://doi.org/10.1016/j.cell.2016.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S (2014) Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 13(11):2855–2870. https://doi.org/10.1074/mcp.M114.039388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez-Martinez J, Phillips J, Sekedat MD, Diaz-Avalos R, Velazquez-Muriel J, Franke JD, Williams R, Stokes DL, Chait BT, Sali A, Rout MP (2012) Structure-function mapping of a heptameric module in the nuclear pore complex. J Cell Biol 196(4):419–434. https://doi.org/10.1083/jcb.201109008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olinares PDB, Chait BT (2020) Native mass spectrometry analysis of affinity-captured endogenous yeast RNA exosome complexes. Methods Mol Biol 2062:357–382. https://doi.org/10.1007/978-1-4939-9822-7_17

    Article  CAS  PubMed  Google Scholar 

  8. LaCava J, Fernandez-Martinez J, Hakhverdyan Z, Rout MP (2016) Optimized affinity capture of yeast protein complexes. Cold Spring Harb Protoc 2016(7):pdb prot087932. https://doi.org/10.1101/pdb.prot087932

    Article  Google Scholar 

  9. LaCava J, Fernandez-Martinez J, Hakhverdyan Z, Rout MP (2016) Protein complex purification by affinity capture. Cold Spring Harb Protoc 2016(7):pdb top077545. https://doi.org/10.1101/pdb.top077545

    Article  Google Scholar 

  10. Hakhverdyan Z, Domanski M, Hough LE, Oroskar AA, Oroskar AR, Keegan S, Dilworth DJ, Molloy KR, Sherman V, Aitchison JD, Fenyo D, Chait BT, Jensen TH, Rout MP, LaCava J (2015) Rapid, optimized interactomic screening. Nat Methods 12(6):553–560. https://doi.org/10.1038/nmeth.3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Obado SO, Field MC, Chait BT, Rout MP (2016) High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol Biol 1411:67–80. https://doi.org/10.1007/978-1-4939-3530-7_3

    Article  CAS  PubMed  Google Scholar 

  12. Winczura K, Domanski M, LaCava J (2020) Affinity proteomic analysis of the human exosome and its cofactor complexes. Methods Mol Biol 2062:291–325. https://doi.org/10.1007/978-1-4939-9822-7_15

    Article  CAS  PubMed  Google Scholar 

  13. Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, Oeffinger M, Nussenzweig MC, Fenyo D, Chait BT, Rout MP (2014) A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11(12):1253–1260. https://doi.org/10.1038/nmeth.3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. LaCava J, Molloy KR, Taylor MS, Domanski M, Chait BT, Rout MP (2015) Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. BioTechniques 58(3):103–119. https://doi.org/10.2144/000114262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oeffinger M, Wei KE, Rogers R, DeGrasse JA, Chait BT, Aitchison JD, Rout MP (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4(11):951–956. https://doi.org/10.1038/nmeth1101

    Article  CAS  PubMed  Google Scholar 

  16. Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28:46–53. https://doi.org/10.1016/j.ceb.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait B, Sali A, Rout M (2007) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701

    Article  CAS  Google Scholar 

  18. Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turonova B, Karius K, Bormel M, Zhang X, Muller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M (2020) In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586(7831):796–800. https://doi.org/10.1038/s41586-020-2670-5

    Article  CAS  PubMed  Google Scholar 

  19. Mosalaganti S, Kosinski J, Albert S, Schaffer M, Strenkert D, Salome PA, Merchant SS, Plitzko JM, Baumeister W, Engel BD, Beck M (2018) In situ architecture of the algal nuclear pore complex. Nat Commun 9(1):2361. https://doi.org/10.1038/s41467-018-04739-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283):363–365. https://doi.org/10.1126/science.aaf0643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6(May):7532. https://doi.org/10.1038/ncomms8532

    Article  CAS  PubMed  Google Scholar 

  22. Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, Perriches T, Rundlet EJ, Jeon YE, Collins LN, Huber FM, Lin DH, Paduch M, Koide A, Lu V, Fischer J, Hurt E, Koide S, Kossiakoff AA, Hoelz A (2015) Architecture of the fungal nuclear pore inner ring complex. Science 350(6256):56–64. https://doi.org/10.1126/science.aac9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nordeen SA, Turman DL, Schwartz TU (2020) Yeast Nup84-Nup133 complex structure details flexibility and reveals conservation of the membrane anchoring ALPS motif. Nat Commun 11(1):6060. https://doi.org/10.1038/s41467-020-19885-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beck M, Mosalaganti S, Kosinski J (2018) From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Curr Opin Struct Biol 52:32–40. https://doi.org/10.1016/j.sbi.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  25. Lindmark R, Thoren-Tolling K, Sjoquist J (1983) Binding of immunoglobulins to protein a and immunoglobulin levels in mammalian sera. J Immunol Methods 62(1):1–13. https://doi.org/10.1016/0022-1759(83)90104-7

    Article  CAS  PubMed  Google Scholar 

  26. Moks T, Abrahmsen L, Nilsson B, Hellman U, Sjoquist J, Uhlen M (1986) Staphylococcal protein A consists of five IgG-binding domains. Eur J Biochem 156(3):637–643. https://doi.org/10.1111/j.1432-1033.1986.tb09625.x

    Article  CAS  PubMed  Google Scholar 

  27. LaCava J, Jiang H, Rout MP (2016) Protein complex affinity capture from Cryomilled mammalian cells. J Vis Exp 118:54518. https://doi.org/10.3791/54518

    Article  CAS  Google Scholar 

  28. Gallagher JR, Kim AJ, Gulati NM, Harris AK (2019) Negative-stain transmission electron microscopy of molecular complexes for image analysis by 2D class averaging. Curr Protoc Microbiol 54(1):e90. https://doi.org/10.1002/cpmc.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frechard A, Sharov G, Werderer M, Schultz P (2021) Optimization of sample preparation for the observation of macromolecular complexes by electron (cryo-)microscopy. Methods Mol Biol 2247:243–256. https://doi.org/10.1007/978-1-0716-1126-5_13

    Article  CAS  PubMed  Google Scholar 

  30. Brillault L, Landsberg MJ (2020) Preparation of proteins and macromolecular assemblies for Cryo-electron microscopy. Methods Mol Biol 2073:221–246. https://doi.org/10.1007/978-1-4939-9869-2_13

    Article  CAS  PubMed  Google Scholar 

  31. Arthur CP, Ciferri C (2019) High-throughput protein analysis using negative stain electron microscopy and 2D classification. Methods Mol Biol 2025:477–485. https://doi.org/10.1007/978-1-4939-9624-7_22

    Article  CAS  PubMed  Google Scholar 

  32. Scarff CA, Fuller MJG, Thompson RF, Iadanza MG (2018) Variations on negative stain electron microscopy methods: tools for tackling challenging systems. J Vis Exp 132:57199. https://doi.org/10.3791/57199

    Article  CAS  Google Scholar 

  33. Booth DS, Avila-Sakar A, Cheng Y (2011) Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J Vis Exp 58:3227. https://doi.org/10.3791/3227

    Article  CAS  Google Scholar 

  34. Rehbein P, Schwalbe H (2015) Integrated protocol for reliable and fast quantification and documentation of electrophoresis gels. Protein Expr Purif 110:1–6. https://doi.org/10.1016/j.pep.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  35. Alonso Villela SM, Kraiem H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L (2020) A protocol for recombinant protein quantification by densitometry. Microbiology 9(6):1175–1182. https://doi.org/10.1002/mbo3.1027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants U54 GM103511, R01 GM112108, P41 GM109824 and U54 DK107981. We thank all members of the Laboratory of Cellular and Structural Biology (Rout lab) and the Laboratory of Mass Spectrometry and Gaseous Ion Chemistry (headed by Prof. Brian Chait), especially Wenzhu Zhang and Erica Jacobs, for their assistance with the development and testing of this protocol as well as for their feedback and helpful discussions. We thank Azraa S. Chaudhury for her help with protocol optimization. We gratefully acknowledge Kunihiro Uryu and the EMRC Resource Center (Rockefeller University) for teaching and supporting our negative stain electron microscopy analysis. We are grateful to Dan Simon for support, invaluable discussions, and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nudelman, I., Fernandez-Martinez, J., Rout, M.P. (2022). Affinity Isolation of Endogenous Saccharomyces Cerevisiae Nuclear Pore Complexes. In: Goldberg, M.W. (eds) The Nuclear Pore Complex. Methods in Molecular Biology, vol 2502. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2337-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2337-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2336-7

  • Online ISBN: 978-1-0716-2337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics