Skip to main content

Crystallographic Studies of Rhodopsins: Structure and Dynamics

  • Protocol
  • First Online:
Rhodopsin

Abstract

Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein–chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The photocycle intermediates and their nomenclature in microbial rhodopsins were originally established in bR: K and O are red-shifted intermediates, L, M, and N are blue-shifted. Animal rhodopsins have similar intermediates called Batho, Lumi, Meta I, and Meta II. Additional transient species exist in both systems. The I (Photo) intermediate, an excited state, is formed within 200 fs, the K (Batho) intermediate within a few ps, Lumi in ns, L and then M (Meta I) in μs, N (Meta II) in ms, followed by O.

References

  1. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163. https://doi.org/10.1021/cr4003769

    Article  CAS  PubMed  Google Scholar 

  2. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767. https://doi.org/10.1146/annurev.biochem.75.103004.142743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc B 364:2881–2895. https://doi.org/10.1098/rstb.2009.0051

    Article  CAS  Google Scholar 

  4. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605. https://doi.org/10.1523/jneurosci.20-02-00600.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Terakita A (2005) The opsins. Genome Biol 6:213. https://doi.org/10.1186/gb-2005-6-3-213

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  Google Scholar 

  7. Matsuno-Yagi A, Mukohata Y (1977) 2 Possible roles of bacteriorhodopsin - comparative-study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78(1):237–243

    Google Scholar 

  8. Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    Article  CAS  Google Scholar 

  9. Bogomolni RA, Spudich JL (1982) Identification of a 3rd rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79:6250–6254. https://doi.org/10.1073/pnas.79.20.6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomioka H, Takahashi T, Kamo N, Kobatake Y (1986) Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem Biophys Res Commun 139:389–395. https://doi.org/10.1016/S0006-291X(86)80003-1

  11. Spudich EN, Sundberg SA, Manor D, Spudich JL (1986) Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins 1:239–246. https://doi.org/10.1002/prot.340010306

  12. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Mustl AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398. https://doi.org/10.1126/science.1072068

    Article  CAS  PubMed  Google Scholar 

  13. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Govorunova EG, Sineshchekov OA, Janz R, Liu XQ, Spudich JL (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650. https://doi.org/10.1126/science.aaa7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song L, El-Sayed MA, Lanyi JK (1993) Protein catalysis of the retinal subpicosecond photoisomerization in the primary process of bacteriorhodopsin photosynthesis. Science 261:891–894

    Article  CAS  Google Scholar 

  16. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757. https://doi.org/10.1038/35021099

    Article  CAS  PubMed  Google Scholar 

  17. Chapman HN, Caleman C, Timneanu N (2014) Diffraction before destruction. Philos Trans R Soc B 369:20130313. https://doi.org/10.1098/rstb.2013.0313

    Article  Google Scholar 

  18. Chapman HN (2017) Structure determination using X-ray free-electron laser pulses. Methods Mol Biol 1607:295–324

    Article  CAS  Google Scholar 

  19. White TA (2017) Processing of XFEL data. Methods Mol Biol 1607:325–347

    Article  CAS  Google Scholar 

  20. Grunbein ML, Nass Kovacs G (2019) Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D 75:178–191. https://doi.org/10.1107/S205979831801567X

    Article  Google Scholar 

  21. Weierstall U, Spence JCH, Doak RB (2012) Injector for scattering measurements on fully solvated biospecies. Rev Sci Instrum 83:035108. https://doi.org/10.1063/1.3693040

    Article  CAS  PubMed  Google Scholar 

  22. Doak RB, Kovacs GN, Gorel A, Foucar L, Barends TRM, Grunbein ML, Hilpert M, Kloos M, Roome CM, Shoeman RL, Stricker M, Tono K, You D, Ueda K, Sherrell DA, Owen RL, Schlichting I (2018) Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Acta Crystallogr D 74:1000–1007. https://doi.org/10.1107/s2059798318011634

    Article  CAS  Google Scholar 

  23. Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JCH, Doak RB, Nelson G, Fromme P, Fromme R, Grotjohann I, Kupitz C, Zatsepin NA, Liu H, Basu S, Wacker D, Han GW, Katritch V, Boutet S, Messerschmidt M, Williams GJ, Koglin JE, Seibert MM, Klinker M, Gati C, Shoeman RL, Barty A, Chapman HN, Kirian RA, Beyerlein KR, Stevens RC, Li D, Shah STA, Howe N, Caffrey M, Cherezov V (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309. https://doi.org/10.1038/ncomms4309

    Article  CAS  PubMed  Google Scholar 

  24. Botha S, Nass K, Barends TRM, Kabsch W, Latz B, Dworkowski F, Foucar L, Panepucci E, Wang MT, Shoeman RL, Schlichting I, Doak RB (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D 71:387–397

    Article  CAS  Google Scholar 

  25. Sugahara M, Mizohata E, Nango E, Suzuki M, Tanaka T, Masudala T, Tanaka R, Shimamura T, Tanaka Y, Suno C, Ihara K, Pan D, Kakinouchi K, Sugiyama S, Murata M, Inoue T, Tono K, Song C, Park J, Kameshima T, Hatsui T, Joti Y, Yabashi M, Iwata S (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63. https://doi.org/10.1038/nmeth.3172

    Article  CAS  PubMed  Google Scholar 

  26. Kovacsova G, Grunbein ML, Kloos M, Barends TRM, Schlesinger R, Heberle J, Kabsch W, Shoeman RL, Doak RB, Schlichting I (2017) Viscous hydrophilic injection matrices for serial crystallography. IUCrJ 4:400–410. https://doi.org/10.1107/S2052252517005140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zarrine-Afsar A, Barends TR, Muller C, Fuchs MR, Lomb L, Schlichting I, Miller RJ (2012) Crystallography on a chip. Acta Crystallogr D Biol Crystallogr 68:321–323. https://doi.org/10.1107/S0907444911055296

    Article  CAS  PubMed  Google Scholar 

  28. Owen RL, Axford D, Sherrell DA, Kuo A, Ernst OP, Schulz EC, Miller RJ, Mueller-Werkmeister HM (2017) Low-dose fixed-target serial synchrotron crystallography. Acta Crystallogr D Struct Biol 73:373–378. https://doi.org/10.1107/S2059798317002996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nogly P, James D, Wang DJ, White TA, Zatsepin N, Shilova A, Nelson G, Liu HG, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu WT, Bath P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, Weierstall U (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  Google Scholar 

  30. Diederichs K, Wang M (2017) Serial synchrotron X-ray crystallography (SSX). Methods Mol Biol 1607:239–272

    Article  CAS  Google Scholar 

  31. Mehrabi P, Schulz EC, Dsouza R, Muller-Werkmeister HM, Tellkamp F, Miller RJD, Pai EF (2019) Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 365:1167–1170. https://doi.org/10.1126/science.aaw9904

    Article  CAS  PubMed  Google Scholar 

  32. Weinert T, Skopintsev P, James D, Dworkowski F, Panepucci E, Kekilli D, Furrer A, Brunle S, Mous S, Ozerov D, Nogly P, Wang M, Standfuss J (2019) Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365:61–65. https://doi.org/10.1126/science.aaw8634

    Article  CAS  PubMed  Google Scholar 

  33. Balashov SP, Ebrey TG (2001) Trapping and spectroscopic identification of the photointermediates of bacteriorhodopsin at low temperatures. Photochem Photobiol 73:453–462. https://doi.org/10.1562/0031-8655(2001)073<0453:tasiot>2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  34. Wickstrand C, Dods R, Royant A, Neutze R (2015) Bacteriorhodopsin: would the real structural intermediates please stand up? Biochim Biophys Acta 1850:536–553

    Article  CAS  Google Scholar 

  35. Miller RJD, Pare-Labrosse O, Sarracini A, Besaw JE (2020) Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance. Nat Commun 11:1240. https://doi.org/10.1038/s41467-020-14971-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prokhorenko VI, Halpin A, Johnson PJM, Miller RJD, Brown LS (2011) Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J Chem Phys 134:085105

    Article  Google Scholar 

  37. Grunbein ML, Stricker M, Nass Kovacs G, Kloos M, Doak RB, Shoeman RL, Reinstein J, Lecler S, Haacke S, Schlichting I (2020) Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography. Nat Methods 17:681–684. https://doi.org/10.1038/s41592-020-0847-3

    Article  CAS  PubMed  Google Scholar 

  38. Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, Kimura T, Tanaka T, Tono K, Song C, Tanaka R, Arima T, Yamashita A, Kobayashi J, Hosaka T, Mizohata E, Nogly P, Sugahara M, Nam D, Nomura T, Shimamura T, Im D, Fujiwara T, Yamanaka Y, Jeon B, Nishizawa T, Oda K, Fukuda M, Andersson R, Bath P, Dods R, Davidsson J, Matsuoka S, Kawatake S, Murata M, Nureki O, Owada S, Kameshima T, Hatsui T, Joti Y, Schertler G, Yabashi M, Bondar AN, Standfuss J, Neutze R, Iwata S (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–1557

    Article  CAS  Google Scholar 

  39. Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Bath P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brunle S, Tanaka T, Wu WT, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, Standfuss J (2018) Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:eaat0094

    Article  Google Scholar 

  40. Kovacs GN, Colletier J-P, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper, R, Gorel, A, Hilpert, M, Kloos, M, Koglin, JE, Reinstein, J, Roome, CM, Schlesinger, R, Seaberg, M, Shoeman, RL, Stricker, M, Boutet, S, Haacke, S, Heberle, J, Heyne, K, Domratcheva, T, Barends, TRM, Schlichting, I (2019) Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 10:1–17

    Google Scholar 

  41. Skopintsev P, Ehrenberg D, Weinert T, James D, Kar RK, Johnson PJM, Ozerov D, Furrer A, Martiel I, Dworkowski F, Nass K, Knopp G, Cirelli C, Arrell C, Gashi D, Mous S, Wranik M, Gruhl T, Kekilli D, Brunle S, Deupi X, Schertler GFX, Benoit RM, Panneels V, Nogly P, Schapiro I, Milne C, Heberle J, Standfuss J (2020) Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 583:314–318. https://doi.org/10.1038/s41586-020-2307-8

    Article  CAS  PubMed  Google Scholar 

  42. Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A, Botha S, Doak RB, Falahati K, Hartmann E, Hilpert M, Heinz M, Hoffmann MC, Kofinger J, Koglin JE, Kovacsova G, Liang M, Milathianaki D, Lemke HT, Reinstein J, Roome CM, Shoeman RL, Williams GJ, Burghardt I, Hummer G, Boutet S, Schlichting I (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  Google Scholar 

  43. Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS, Tenboer J, Basu S, Boutet S, DePonte DP, Liang MN, White TA, Zatsepin NA, Yefanov O, Morozov D, Oberthuer D, Gati C, Subramanian G, James D, Zhao Y, Koralek J, Brayshaw J, Kupitz C, Conrad C, Roy-Chowdhury S, Coe JD, Metz M, Xavier PL, Grant TD, Koglin JE, Ketawala G, Fromme R, Srajer V, Henning R, Spence JCH, Ourmazd A, Schwander P, Weierstall U, Frank M, Fromme P, Barty A, Chapman HN, Moffat K, van Thor JJ, Schmidt M (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729

    Article  CAS  Google Scholar 

  44. Coquelle N, Sliwa M, Woodhouse J, Schiro G, Adam V, Aquila A, Barends TRM, Boutet S, Byrdin M, Carbajo S, De la Mora E, Doak RB, Feliks M, Fieschi F, Foucar L, Guillon V, Hilpert M, Hunter MS, Jakobs S, Koglin JE, Kovacsova G, Lane TJ, Levy B, Liang MN, Nass K, Ridard J, Robinson JS, Roome CM, Ruckebusch C, Seaberg M, Thepaut M, Cammarata M, Demachy I, Field M, Shoeman RL, Bourgeois D, Colletier JP, Schlichting I, Weik M (2018) Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 10:31–37

    Article  CAS  Google Scholar 

  45. Woodhouse J, Nass Kovacs G, Coquelle N, Uriarte LM, Adam V, Barends TRM, Byrdin M, de la Mora E, Bruce Doak R, Feliks M, Field M, Fieschi F, Guillon V, Jakobs S, Joti Y, Macheboeuf P, Motomura K, Nass K, Owada S, Roome CM, Ruckebusch C, Schiro G, Shoeman RL, Thepaut M, Togashi T, Tono K, Yabashi M, Cammarata M, Foucar L, Bourgeois D, Sliwa M, Colletier JP, Schlichting I, Weik M (2020) Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat Commun 11:741. https://doi.org/10.1038/s41467-020-14537-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S (2020) The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. elife 9:e53514. https://doi.org/10.7554/eLife.53514

    Article  PubMed  PubMed Central  Google Scholar 

  47. Matsui Y, Sakai K, Murakami M, Shiro Y, Adachi S, Okumura H, Kouyama T (2002) Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481. https://doi.org/10.1016/s0022-2836(02)01110-5

    Article  CAS  PubMed  Google Scholar 

  48. Borshchevskiy VI, Round ES, Popov AN, Bueldt G, Gordeliy VI (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409:813–825. https://doi.org/10.1016/j.jmb.2011.04.038

    Article  CAS  PubMed  Google Scholar 

  49. Borshchevskiy V, Round E, Erofeev I, Weik M, Ishchenko A, Gushchin I, Mishin A, Willbold D, Buldt G, Gordeliy V (2014) Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr D Biol Crystallogr 70:2675–2685. https://doi.org/10.1107/S1399004714017295

    Article  CAS  PubMed  Google Scholar 

  50. Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Crystallogr 46:1225–1230. https://doi.org/10.1107/S0021889813011461

    Article  CAS  Google Scholar 

  51. Bury CS, Brooks-Bartlett JC, Walsh SP, Garman EF (2018) Estimate your dose: RADDOSE-3D. Protein Sci 27:217–228. https://doi.org/10.1002/pro.3302

    Article  CAS  PubMed  Google Scholar 

  52. Owen RL, Rudino-Pinera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917. https://doi.org/10.1073/pnas.0600973103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D Biol Crystallogr 56:328–341. https://doi.org/10.1107/s0907444999016261

    Article  CAS  PubMed  Google Scholar 

  54. Weik M, Ravelli RB, Kryger G, McSweeney S, Raves ML, Harel M, Gros P, Silman I, Kroon J, Sussman JL (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97:623–628. https://doi.org/10.1073/pnas.97.2.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beitlich T, Kuhnel K, Schulze-Briese C, Shoeman RL, Schlichting I (2007) Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography. J Synchrotron Radiat 14:11–23. https://doi.org/10.1107/S0909049506049806

    Article  CAS  PubMed  Google Scholar 

  56. Pompidor G, Dworkowski FS, Thominet V, Schulze-Briese C, Fuchs MR (2013) A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source. J Synchrotron Radiat 20:765–776. https://doi.org/10.1107/S0909049513016063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. von Stetten D, Giraud T, Carpentier P, Sever F, Terrien M, Dobias F, Juers DH, Flot D, Mueller-Dieckmann C, Leonard GA, de Sanctis D, Royant A (2015) In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallogr D Biol Crystallogr 71:15–26. https://doi.org/10.1107/S139900471401517X

    Article  CAS  Google Scholar 

  58. Song L, El-Sayed MA (1998) Primary step in bacteriorhodopsin photosynthesis: bond stretch rather than angle twist of its retinal excited-state structure. J Am Chem Soc 120:8889–8890

    Article  CAS  Google Scholar 

  59. Hutchison CDM, Kaucikas M, Tenboer J, Kupitz C, Moffat K, Schmidt M, van Thor JJ (2016) Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. Chem Phys Lett 654:63–71. https://doi.org/10.1016/j.cplett.2016.04.087

    Article  CAS  Google Scholar 

  60. Konold PE, Arik E, Weissenborn J, Arents JC, Hellingwerf KJ, van Stokkum IHM, Kennis JTM, Groot ML (2020) Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Nat Commun 11:4248. https://doi.org/10.1038/s41467-020-18065-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ, Malmerberg E, Davidsson J, Milathianaki D, DePonte DP, Shoeman RL, Wang D, James D, Katona G, Westenhoff S, White TA, Aquila A, Bari S, Berntsen P, Bogan M, van Driel TB, Doak RB, Kjaer KS, Frank M, Fromme R, Grotjohann I, Henning R, Hunter MS, Kirian RA, Kosheleva I, Kupitz C, Liang M, Martin AV, Nielsen MM, Messerschmidt M, Seibert MM, Sjohamn J, Stellato F, Weierstall U, Zatsepin NA, Spence JC, Fromme P, Schlichting I, Boutet S, Groenhof G, Chapman HN, Neutze R (2014) Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat Methods 11:923–926

    Article  CAS  Google Scholar 

  62. Scherrer P, Mathew MK, Sperling W, Stoeckenius W (1989) Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers. Biochemistry 28:829–834

    Article  CAS  Google Scholar 

  63. Muders V, Kerruth S, Lorenz-Fonfria VA, Bamann C, Heberle J, Schlesinger R (2014) Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1. FEBS Lett 588:2301–2306. https://doi.org/10.1016/j.febslet.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  64. Wand A, Friedman N, Sheves M, Ruhman S (2012) Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration. J Phys Chem B 116:10444–10452. https://doi.org/10.1021/jp2125284

    Article  CAS  PubMed  Google Scholar 

  65. Stoeckenius W, Lozier RH, Bogomolni RA (1979) Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta - Rev Bioenerg 505:215–278. https://doi.org/10.1016/0304-4173(79)90006-5

    Article  CAS  Google Scholar 

  66. Schobert B, Cupp-Vickery J, Hornak V, Smith S, Lanyi J (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715–726. https://doi.org/10.1016/s0022-2836(02)00681-2

    Article  CAS  PubMed  Google Scholar 

  67. Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, Landau EM (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401:822–826. https://doi.org/10.1038/44623

    Article  CAS  PubMed  Google Scholar 

  68. Edman K, Royant A, Larsson G, Jacobson F, Taylor T, van der Spoel D, Landau EM, Pebay-Peyroula E, Neutze R (2004) Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin. J Biol Chem 279:2147–2158. https://doi.org/10.1074/jbc.M300709200

    Article  CAS  PubMed  Google Scholar 

  69. Lanyi JK, Schobert B (2007) Structural changes in the L photointermediate of bacteriorhodopsin. J Mol Biol 365:1379–1392. https://doi.org/10.1016/j.jmb.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  70. Facciotti MT, Rouhani S, Burkard FT, Betancourt FM, Downing KH, Rose RB, McDermott G, Glaeser RM (2001) Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle. Biophys J 81(6):3442–3455. https://doi.org/10.1016/S0006-3495(01)75976-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schobert B, Brown LS, Lanyi JK (2003) Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal schiff base. J Mol Biol 330:553–570. https://doi.org/10.1016/S0022-2836(03)00576-X

    Article  CAS  PubMed  Google Scholar 

  72. Yamamoto M, Hayakawa N, Murakami M, Kouyama T (2009) Crystal structures of different substrates of bacteriorhodopsin’s M intermediate at various pH levels. J Mol Biol 393:559–573. https://doi.org/10.1016/j.jmb.2009.08.047

    Article  CAS  PubMed  Google Scholar 

  73. James D, Weinert T, Skopintsev P, Furrer A, Gashi D, Tanaka T, Nango E, Nogly P, Standfuss J (2019) Improving high viscosity extrusion of microcrystals for time-resolved serial femtosecond crystallography at X-ray lasers. J Vis Exp (144):e59087. https://doi.org/10.3791/59087

  74. Nass K, Foucar L, Barends TRM, Hartmann E, Botha S, Shoeman RL, Doak RB, Alonso-Mori R, Aquila A, Bajt S, Barty A, Bean R, Beyerlein KR, Bublitz M, Drachmann N, Gregersen J, Joensson HO, Kabsch W, Kassemeyer S, Koglin JE, Krumrey M, Mattle D, Messerschmidt M, Nissen P, Reinhard L, Sitsel O, Sokaras D, Williams GJ, Hau-Riege S, Timneanu N, Caleman C, Chapman HN, Boutet S, Schlichting I (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J Synchrotron Radiat 22:225–238. https://doi.org/10.1107/s1600577515002349

    Article  CAS  PubMed  Google Scholar 

  75. Ursby T, Bourgeois D (1997) Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr A 53:564–575

    Article  Google Scholar 

  76. Genick UK (2007) Structure-factor extrapolation using the scalar approximation: theory, applications and limitations. Acta Crystallogr D 63(Pt 10):1029–1041

    Article  CAS  Google Scholar 

  77. Genick UK, Borgstahl GE, Ng K, Ren Z, Pradervand C, Burke PM, Srajer V, Teng TY, Schildkamp W, McRee DE, Moffat K, Getzoff ED (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275(5305):1471–1475

    Article  CAS  Google Scholar 

  78. Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Tornroth-Horsefield S, Chapman HN, Meents A (2019) On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCrJ 6(Pt 4):714–728. https://doi.org/10.1107/S2052252519007395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, Caffrey M (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D Biol Crystallogr 71(Pt 6):1238–1256. https://doi.org/10.1107/S1399004715005210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Khvostichenko DS, Schieferstein JM, Pawate AS, Laible PD, Kenis PJ (2014) X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination. Cryst Growth Des 14(10):4886–4890. https://doi.org/10.1021/cg5011488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang CY, Olieric V, Caffrey M, Wang M (2020) In meso in situ serial X-ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss light source. Methods Mol Biol 2127:293–319. https://doi.org/10.1007/978-1-0716-0373-4_20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilme Schlichting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grünbein, M.L. et al. (2022). Crystallographic Studies of Rhodopsins: Structure and Dynamics. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics