Skip to main content

Crystallization of Microbial Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

Microbial rhodopsins are light-sensitive transmembrane proteins, evolutionary adapted by various organisms like archaea, bacteria, simple eukaryote, and viruses to utilize solar energy for their survival. A complete understanding of functional mechanisms of these proteins is not possible without the knowledge of their high-resolution structures, which can be primarily obtained by X-ray crystallography. This technique, however, requires high-quality crystals, growing of which is a great challenge especially in case of membrane proteins. In this chapter, we summarize methods applied for crystallization of microbial rhodopsins with the emphasis on crystallization in lipidic mesophases, also known as in meso approach. In particular, we describe in detail the methods of crystallization using lipidic cubic phase to grow both large crystals optimized for traditional crystallographic data collection and microcrystals for serial crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  2. Michel H, Oesterhelt D (1980) Three-dimensional crystals of membrane proteins: bacteriorhodopsin. PNAS 77:1283–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  4. Grigorieff N, Ceska TA, Downing KH et al (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421

    Article  CAS  PubMed  Google Scholar 

  5. Tsygannik IN, Baldwin JM (1987) Three-dimensional structure of deoxycholate-treated purple membrane at 6 Å resolution and molecular averaging of three crystal forms of bacteriorhodopsin. Eur Biophys J 14:263–272

    Article  CAS  Google Scholar 

  6. Henderson R, Baldwin JM, Ceska TA et al (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  CAS  PubMed  Google Scholar 

  7. Pebay-Peyroula E (1997) X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    Article  CAS  PubMed  Google Scholar 

  8. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93:14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hasegawa N, Jonotsuka H, Miki K et al (2018) X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Sci Rep 8:13123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bada Juarez JF, Judge PJ, Adam S et al (2021) Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat Commun 12:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Essen L-O, Siegert R, Lehmann WD et al (1998) Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. PNAS 95:11673–11678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schertler GFX, Bartunik HD, Michel H et al (1993) Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3·6 Å resolution. J Mol Biol 234:156–164

    Article  CAS  PubMed  Google Scholar 

  13. Wang N, Wang M, Gao Y et al (2012) Crystallization and preliminary X-ray crystallographic analysis of a blue-light-absorbing proteorhodopsin. Acta Cryst F 68:281–283

    Article  CAS  Google Scholar 

  14. Ran T, Ozorowski G, Gao Y et al (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Cryst D 69:1965–1980

    Article  CAS  Google Scholar 

  15. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cherezov V, Clogston J, Misquitta Y et al (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cherezov V, Clogston J, Papiz MZ et al (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618

    Article  CAS  PubMed  Google Scholar 

  19. Luecke H, Schobert B, Richter HT et al (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  20. Lanyi JK, Schobert B (2002) crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 321:727–737

    Article  CAS  PubMed  Google Scholar 

  21. Schobert B, Cupp-Vickery J, Hornak V et al (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715–726

    Article  CAS  PubMed  Google Scholar 

  22. Kolbe M (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1396

    Article  CAS  PubMed  Google Scholar 

  23. Luecke H, Schobert B, Lanyi JK et al (2001) Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Royant A, Nollert P, Edman K et al (2001) X-ray structure of sensory rhodopsin II at 2.1-Å resolution. PNAS 98:10131–10136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordeliy VI, Labahn J, Moukhametzianov R et al (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    Article  CAS  PubMed  Google Scholar 

  26. Vogeley L (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science 306:1390–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wada T, Shimono K, Kikukawa T et al (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, acetabularia rhodopsin II, from marine alga. J Mol Biol 411:986–998

    Article  CAS  PubMed  Google Scholar 

  28. Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gushchin I, Chervakov P, Kuzmichev P et al (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. PNAS 110:12631–12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shevchenko V, Gushchin I, Polovinkin V et al (2014) Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form. PLoS One 9:e112873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Furuse M, Tamogami J, Hosaka T et al (2015) Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. Acta Cryst D 71:2203–2216

    Article  CAS  Google Scholar 

  32. Kim K, Kwon S-K, Jun S-H et al (2016) Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat Commun 7:12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hosaka T, Yoshizawa S, Nakajima Y et al (2016) Structural mechanism for light-driven transport by a new type of chloride ion pump, nonlabens marinus rhodopsin-3. J Biol Chem 291:17488–17495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Broecker J, Eger BT, Ernst OP (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:384–392

    Article  CAS  PubMed  Google Scholar 

  35. Shevchenko V, Mager T, Kovalev K et al (2017) Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3:e1603187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Volkov O, Kovalev K, Polovinkin V et al (2017) Structural insights into ion conduction by channelrhodopsin 2. Science 358:eaan8862

    Article  PubMed  CAS  Google Scholar 

  37. Oda K, Vierock J, Oishi S et al (2018) Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat Commun 9:3949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim YS, Kato HE, Yamashita K et al (2018) Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 561:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li H, Huang C-Y, Govorunova EG et al (2019) Crystal structure of a natural light-gated anion channelrhodopsin. eLife 8:e41741

    Article  PubMed  PubMed Central  Google Scholar 

  40. Needham DM, Yoshizawa S, Hosaka T et al (2019) A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. PNAS 116:20574–20583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bratanov D, Kovalev K, Machtens J-P et al (2019) Unique structure and function of viral rhodopsins. Nat Commun 10:4939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fudim R, Szczepek M, Vierock J et al (2019) Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci Signal 12:eaav4203

    Article  PubMed  CAS  Google Scholar 

  43. Shihoya W, Inoue K, Singh M et al (2019) Crystal structure of heliorhodopsin. Nature 574:132–136

    Article  CAS  PubMed  Google Scholar 

  44. Kovalev K, Volkov D, Astashkin R et al (2020) High-resolution structural insights into the heliorhodopsin family. PNAS 117:4131–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zabelskii D, Alekseev A, Kovalev K et al (2020) Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 11:5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yun J-H, Park J-H, Jin Z et al (2020) Structure-based functional modification study of a cyanobacterial chloride pump for transporting multiple anions. J Mol Biol 432:5273–5286

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi T, Yasuda S, Suzuki K et al (2020) How does a microbial rhodopsin RxR realize its exceptionally high thermostability with the proton-pumping function being retained? J Phys Chem B 124:990–1000

    Article  CAS  PubMed  Google Scholar 

  48. Kovalev K, Astashkin R, Gushchin I et al (2020) Molecular mechanism of light-driven sodium pumping. Nat Commun 11:2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikuta T, Shihoya W, Sugiura M et al (2020) Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat Commun 11:5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Higuchi A, Shihoya W, Konno M et al (2021) Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping. PNAS 118:e2016328118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu Y, Zhou XE, Gao X et al (2020) Crystal structure of heliorhodopsin 48C12. Cell Res 30:88–90

    Article  CAS  PubMed  Google Scholar 

  52. Kovalev K, Polovinkin V, Gushchin I et al (2019) Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci Adv 5:eaav2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gushchin I, Shevchenko V, Polovinkin V et al (2015) Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol 22:390–396

    Article  CAS  PubMed  Google Scholar 

  54. Kato HE, Inoue K, Abe-Yoshizumi R et al (2015) Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53

    Article  CAS  PubMed  Google Scholar 

  55. Skopintsev P, Ehrenberg D, Weinert T et al (2020) Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 583:314–318

    Article  CAS  PubMed  Google Scholar 

  56. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234

    Article  CAS  PubMed  Google Scholar 

  57. Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poulos S, Morgan JLW, Zimmer J et al (2015) Chapter nineteen—bicelles coming of age: an empirical approach to bicelle crystallization. In: Shukla AK (ed) Methods in enzymology. Academic, pp 393–416

    Google Scholar 

  59. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6

    Article  CAS  PubMed  Google Scholar 

  60. Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Prot Sci 14:836–840

    Article  CAS  Google Scholar 

  61. Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. PNAS 109:8121–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Joh NH, Min A, Faham S et al (2008) Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453:1266–1270

    Article  CAS  PubMed  Google Scholar 

  63. Yohannan S, Yang D, Faham S et al (2004) Proline substitutions are not easily accommodated in a membrane protein. J Mol Biol 341:1–6

    Article  CAS  PubMed  Google Scholar 

  64. Yohannan S, Faham S, Yang D et al (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. PNAS 101:959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Joh NH, Oberai A, Yang D et al (2009) Similar energetic contributions of packing in the core of membrane and water-soluble proteins. J Am Chem Soc 131:10846–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yohannan S, Faham S, Yang D et al (2004) A C α −H···O hydrogen bond in a membrane protein is not stabilizing. J Am Chem Soc 126:2284–2285

    Article  CAS  PubMed  Google Scholar 

  67. Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. PNAS 105:16561–16565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakane T, Hanashima S, Suzuki M et al (2016) Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. PNAS 113:13039–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morizumi T, Ou W-L, Van Eps N et al (2019) X-ray crystallographic structure and oligomerization of gloeobacter rhodopsin. Sci Rep 9:11283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Besaw JE, Ou W-L, Morizumi T et al (2020) The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 295:14793–14804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sato H, Takeda K, Tani K et al (1999) Specific lipid–protein interactions in a novel honeycomb lattice structure of bacteriorhodopsin. Acta Cryst D 55:1251–1256

    Article  CAS  Google Scholar 

  72. Takeda K, Sato H, Hino T et al (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol 283:463–474

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto M, Hayakawa N, Murakami M et al (2009) Crystal structures of different substates of bacteriorhodopsin’s M intermediate at various pH levels. J Mol Biol 393:559–573

    Article  CAS  PubMed  Google Scholar 

  74. Matsui Y, Sakai K, Murakami M et al (2002) Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481

    Article  CAS  PubMed  Google Scholar 

  75. Okumura H, Murakami M, Kouyama T (2005) Crystal structures of acid blue and alkaline purple forms of bacteriorhodopsin. J Mol Biol 351:481–495

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Yamazaki Y, Hikake M et al (2012) Crystal structure of the O intermediate of the Leu93→Ala mutant of bacteriorhodopsin. Proteins 80:2384–2396

    Article  CAS  PubMed  Google Scholar 

  77. Enami N, Yoshimura K, Murakami M et al (2006) Crystal structures of archaerhodopsin-1 and -2: common structural motif in archaeal light-driven proton pumps. J Mol Biol 358:675–685

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Mizuno K, Murata Y et al (2013) Crystal structure of deltarhodopsin-3 from Haloterrigena thermotolerans. Proteins 81:1585–1592

    Article  CAS  PubMed  Google Scholar 

  79. Chan SK, Kitajima-Ihara T, Fujii R et al (2014) Crystal structure of cruxrhodopsin-3 from Haloarcula vallismortis. PLoS One 9:e108362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yoshimura K, Kouyama T (2008) Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J Mol Biol 375:1267–1281

    Article  CAS  PubMed  Google Scholar 

  81. Kouyama T, Fujii R, Kanada S et al (2014) Structure of archaerhodopsin-2 at 1.8 Å resolution. Acta Cryst D 70:2692–2701

    Article  CAS  Google Scholar 

  82. Schreiner M, Schlesinger R, Heberle J et al (2015) Structure of Halorhodopsin from Halobacterium salinarum in a new crystal form that imposes little restraint on the E–F loop. J Struct Biol 190:373–378

    Article  CAS  PubMed  Google Scholar 

  83. Schreiner M, Schlesinger R, Heberle J et al (2016) Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site. Acta Cryst F 72:692–699

    Article  CAS  Google Scholar 

  84. Kouyama T, Kanada S, Takeguchi Y et al (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579

    Article  CAS  PubMed  Google Scholar 

  85. Kouyama T, Kawaguchi H, Nakanishi T et al (2015) Crystal structures of the L1, L2, N, and O states of pharaonis Halorhodopsin. Biophys J 108:2680–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Borshchevskiy V, Efremov R, Moiseeva E et al (2010) Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase. Acta Cryst D 66:26–32

    Article  CAS  Google Scholar 

  87. Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cherezov V, Liu J, Griffith M et al (2008) LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst Growth Des 8:4307–4315

    Google Scholar 

  89. Liu W, Hanson MA, Stevens RC et al (2010) LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J 98:1539–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheng A, Hummel B, Qiu H et al (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  CAS  PubMed  Google Scholar 

  91. Huang C-Y, Olieric V, Ma P et al (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Cryst D 71:1238–1256

    Article  CAS  Google Scholar 

  92. Gordeliy VI, Schlesinger R, Efremov R et al (2003) Crystallization in lipidic cubic phases. In: Selinsky BS (ed) Membrane protein protocols: expression, purification, and characterization. Humana Press, Totowa, NJ, pp 305–316

    Chapter  Google Scholar 

  93. Ishchenko A, Cherezov V, Liu W (2016) Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. J Vis Exp 115:e54463

    Google Scholar 

  94. Liu W, Ishchenko A, Cherezov V (2014) Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9:2123–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Russian Science Foundation (RSF) Project 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Cherezov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kovalev, K., Astashkin, R., Gordeliy, V., Cherezov, V. (2022). Crystallization of Microbial Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics