Skip to main content
Book cover

Rhodopsin pp 339–360Cite as

Optogenetic Control of Human Stem Cell-Derived Neurons

Part of the Methods in Molecular Biology book series (MIMB,volume 2501)

Abstract

Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.

Key words

  • Induced pluripotent stem cells (iPSCs)
  • Optogenetic stimulation
  • Patch clamp
  • Multi-electrode array (MEA) electrophysiology
  • Long-term iPSC-derived neuronal culture
  • Banker culture
  • Neuron-astrocyte co-culture

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2329-9_17
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2329-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Busskamp V, Lewis NE, Guye P et al (2014) Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol 10:760. https://doi.org/10.15252/msb.20145508

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci 366:2312–2322. https://doi.org/10.1098/rstb.2011.0030

    CrossRef  CAS  Google Scholar 

  3. Lam RS, Töpfer FM, Wood PG et al (2017) Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS One 12:e0169506

    CrossRef  Google Scholar 

  4. Silva MC, Haggarty SJ (2019) Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 1471(1):18–56. https://doi.org/10.1111/nyas.14012

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Engle SJ, Blaha L, Kleiman RJ (2018) Best practices for translational disease modeling using human iPSC-derived neurons. Neuron 100:783–797. https://doi.org/10.1016/j.neuron.2018.10.033

    CrossRef  CAS  PubMed  Google Scholar 

  6. Klapper SD, Sauter EJ, Swiersy A et al (2017) On-demand optogenetic activation of human stem-cell-derived neurons. Sci Rep 7:14450. https://doi.org/10.1038/s41598-017-14827-6

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Habibey R, Latifi S, Mousavi H et al (2017) A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity. Sci Rep 7(1):8558. https://doi.org/10.1038/s41598-017-09033-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habibey R, Sharma K, Swiersy A, Busskamp V (2020) Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun 527(2):343–349. https://doi.org/10.1016/j.bbrc.2020.01.141

    CrossRef  CAS  PubMed  Google Scholar 

  9. Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100. https://doi.org/10.1016/j.tibtech.2014.11.007

    CrossRef  CAS  PubMed  Google Scholar 

  10. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. https://doi.org/10.1038/nmeth.2836

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hooks BM (2018) Dual-channel photostimulation for independent excitation of two populations. Curr Protoc Neurosci 85:e52. https://doi.org/10.1002/cpns.52

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Latifi S, Mitchell S, Habibey R et al (2020) Neuronal network topology indicates distinct recovery processes after stroke. Cereb Cortex 30(12):6363–6375. https://doi.org/10.1093/cercor/bhaa191

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Daadi MM, Klausner JQ, Bajar B et al (2016) Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant 25:1371–1380. https://doi.org/10.3727/096368915X688533

    CrossRef  PubMed  Google Scholar 

  15. Weitz AJ, Lee JH (2016) Probing neural transplant networks in vivo with optogenetics and optogenetic fMRI. Stem Cells Int 2016:8612751. https://doi.org/10.1155/2016/8612751

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Weick JP, Johnson MA, Skroch SP et al (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008–2016. https://doi.org/10.1002/stem.514

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinbeck JA, Choi SJ, Mrejeru A et al (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209. https://doi.org/10.1038/nbt.3124

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauter EJ, Kutsche LK, Klapper SD, Busskamp V (2019) Induced neurons for the study of neurodegenerative and neurodevelopmental disorders. In: Ben-Yosef D, Mayshar Y (eds) Fragile-X syndrome: methods and protocols. Springer, New York, pp 101–121

    CrossRef  Google Scholar 

  19. Lee S, George JH, Nagel DA et al (2019) Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 13:369–384. https://doi.org/10.1002/term.2786

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Renault R, Sukenik N, Descroix S et al (2015) Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 10:e0120680

    CrossRef  Google Scholar 

  21. Schmieder F, Habibey R, Büttner L, et al (2019) Optogenetic investigation of in vitro human iPSC-derived neuronal networks (conference presentation). In: Proceedings of SPIE

    Google Scholar 

  22. Schmieder F, Klapper DS, Koukourakis N et al (2018) Optogenetic stimulation of human neural networks using fast ferroelectric spatial light modulator-based holographic illumination. Appl Sci 8(7):1180

    CrossRef  Google Scholar 

  23. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415. https://doi.org/10.1038/nprot.2006.356

    CrossRef  CAS  PubMed  Google Scholar 

  24. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. Wiley, New York

    Google Scholar 

  25. Habibey R, Golabchi A, Blau A (2015) Microchannel scaffolds for neural signal acquisition and analysis. In: Londral AR, Encarnação P, Rovira JLP (eds) Neurotechnology, electronics, and informatics. Springer International Publishing, Cham, pp 47–64

    CrossRef  Google Scholar 

  26. Maybeck V, Schnitker J, Li W et al (2016) An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2:55017. https://doi.org/10.1088/2057-1976/2/5/055017

    CrossRef  Google Scholar 

  27. Wilk N, Habibey R, Golabchi A et al (2016) Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology. OCL 23(1):D117. https://doi.org/10.1051/ocl/2015068

    CrossRef  Google Scholar 

  28. Habibey R, Golabchi A, Latifi S et al (2015) A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 15(24):4578–4590. https://doi.org/10.1039/c5lc01027f

    CrossRef  CAS  PubMed  Google Scholar 

  29. Latifi S, Tamayol A, Habibey R et al (2016) Natural lecithin promotes neural network complexity and activity. Sci Rep 6:25777. https://doi.org/10.1038/srep25777

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saalfrank D, Konduri AK, Latifi S et al (2015) Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging. R Soc Open Sci 2(6):150031. https://doi.org/10.1098/rsos.150031

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/j.neuron.2011.06.004

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Volkswagen Foundation (Freigeist—A110720), the European Research Council (ERC-StG 678071—ProNeurons), and the Deutsche Forschungsgemeinschaft (EXC-2151-390873048—Cluster of Excellence—ImmunoSensation2 at the University of Bonn and SPP2127) support VB. JS acknowledges the support by the Joachim Herz Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Busskamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Habibey, R., Striebel, J., Sharma, K., Busskamp, V. (2022). Optogenetic Control of Human Stem Cell-Derived Neurons. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols