Abstract
Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.
Key words
- Induced pluripotent stem cells (iPSCs)
- Optogenetic stimulation
- Patch clamp
- Multi-electrode array (MEA) electrophysiology
- Long-term iPSC-derived neuronal culture
- Banker culture
- Neuron-astrocyte co-culture
This is a preview of subscription content, access via your institution.
Buying options





References
Busskamp V, Lewis NE, Guye P et al (2014) Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol 10:760. https://doi.org/10.15252/msb.20145508
Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci 366:2312–2322. https://doi.org/10.1098/rstb.2011.0030
Lam RS, Töpfer FM, Wood PG et al (2017) Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS One 12:e0169506
Silva MC, Haggarty SJ (2019) Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 1471(1):18–56. https://doi.org/10.1111/nyas.14012
Engle SJ, Blaha L, Kleiman RJ (2018) Best practices for translational disease modeling using human iPSC-derived neurons. Neuron 100:783–797. https://doi.org/10.1016/j.neuron.2018.10.033
Klapper SD, Sauter EJ, Swiersy A et al (2017) On-demand optogenetic activation of human stem-cell-derived neurons. Sci Rep 7:14450. https://doi.org/10.1038/s41598-017-14827-6
Habibey R, Latifi S, Mousavi H et al (2017) A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity. Sci Rep 7(1):8558. https://doi.org/10.1038/s41598-017-09033-3
Habibey R, Sharma K, Swiersy A, Busskamp V (2020) Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun 527(2):343–349. https://doi.org/10.1016/j.bbrc.2020.01.141
Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100. https://doi.org/10.1016/j.tibtech.2014.11.007
Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. https://doi.org/10.1038/nmeth.2836
Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817
Hooks BM (2018) Dual-channel photostimulation for independent excitation of two populations. Curr Protoc Neurosci 85:e52. https://doi.org/10.1002/cpns.52
Latifi S, Mitchell S, Habibey R et al (2020) Neuronal network topology indicates distinct recovery processes after stroke. Cereb Cortex 30(12):6363–6375. https://doi.org/10.1093/cercor/bhaa191
Daadi MM, Klausner JQ, Bajar B et al (2016) Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant 25:1371–1380. https://doi.org/10.3727/096368915X688533
Weitz AJ, Lee JH (2016) Probing neural transplant networks in vivo with optogenetics and optogenetic fMRI. Stem Cells Int 2016:8612751. https://doi.org/10.1155/2016/8612751
Weick JP, Johnson MA, Skroch SP et al (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008–2016. https://doi.org/10.1002/stem.514
Steinbeck JA, Choi SJ, Mrejeru A et al (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209. https://doi.org/10.1038/nbt.3124
Sauter EJ, Kutsche LK, Klapper SD, Busskamp V (2019) Induced neurons for the study of neurodegenerative and neurodevelopmental disorders. In: Ben-Yosef D, Mayshar Y (eds) Fragile-X syndrome: methods and protocols. Springer, New York, pp 101–121
Lee S, George JH, Nagel DA et al (2019) Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 13:369–384. https://doi.org/10.1002/term.2786
Renault R, Sukenik N, Descroix S et al (2015) Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 10:e0120680
Schmieder F, Habibey R, Büttner L, et al (2019) Optogenetic investigation of in vitro human iPSC-derived neuronal networks (conference presentation). In: Proceedings of SPIE
Schmieder F, Klapper DS, Koukourakis N et al (2018) Optogenetic stimulation of human neural networks using fast ferroelectric spatial light modulator-based holographic illumination. Appl Sci 8(7):1180
Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415. https://doi.org/10.1038/nprot.2006.356
Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. Wiley, New York
Habibey R, Golabchi A, Blau A (2015) Microchannel scaffolds for neural signal acquisition and analysis. In: Londral AR, Encarnação P, Rovira JLP (eds) Neurotechnology, electronics, and informatics. Springer International Publishing, Cham, pp 47–64
Maybeck V, Schnitker J, Li W et al (2016) An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2:55017. https://doi.org/10.1088/2057-1976/2/5/055017
Wilk N, Habibey R, Golabchi A et al (2016) Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology. OCL 23(1):D117. https://doi.org/10.1051/ocl/2015068
Habibey R, Golabchi A, Latifi S et al (2015) A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 15(24):4578–4590. https://doi.org/10.1039/c5lc01027f
Latifi S, Tamayol A, Habibey R et al (2016) Natural lecithin promotes neural network complexity and activity. Sci Rep 6:25777. https://doi.org/10.1038/srep25777
Saalfrank D, Konduri AK, Latifi S et al (2015) Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging. R Soc Open Sci 2(6):150031. https://doi.org/10.1098/rsos.150031
Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/j.neuron.2011.06.004
Acknowledgments
The Volkswagen Foundation (Freigeist—A110720), the European Research Council (ERC-StG 678071—ProNeurons), and the Deutsche Forschungsgemeinschaft (EXC-2151-390873048—Cluster of Excellence—ImmunoSensation2 at the University of Bonn and SPP2127) support VB. JS acknowledges the support by the Joachim Herz Stiftung.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Habibey, R., Striebel, J., Sharma, K., Busskamp, V. (2022). Optogenetic Control of Human Stem Cell-Derived Neurons. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_17
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2329-9_17
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2328-2
Online ISBN: 978-1-0716-2329-9
eBook Packages: Springer Protocols