Skip to main content

Size Exclusion Chromatography Strategies and MASH Explorer for Large Proteoform Characterization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2500))

Abstract

Top-down mass spectrometry (MS)-based analysis of larger proteoforms (>50 kDa) is typically challenging due to an exponential decay in the signal-to-noise ratio with increasing protein molecular weight (MW) and coelution with low-MW proteoforms. Size exclusion chromatography (SEC) fractionates proteins based on their size, separating larger proteoforms from those of smaller size in the proteome. In this protocol, we initially describe the use of SEC to fractionate high-MW proteoforms from low-MW proteoforms. Subsequently, the SEC fractions containing the proteoforms of interest are subjected to reverse-phase liquid chromatography (RPLC) coupled online with high-resolution MS. Finally, proteoforms are characterized using MASH Explorer, a user-friendly software environment for in-depth proteoform characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith LM, Kelleher NL (2018) Proteoforms as the next proteomics currency. Science 359(6380):1106

    Article  CAS  Google Scholar 

  2. Smith LM, Thomas PM, Shortreed MR, Schaffer LV, Fellers RT, LeDuc RD, Tucholski T, Ge Y, Agar JN, Anderson LC, Chamot-Rooke J, Gault J, Loo JA, Pasa-Tolic L, Robinson CV, Schluter H, Tsybin YO, Vilaseca M, Vizcaino JA, Danis PO, Kelleher NL (2019) A five-level classification system for proteoform identifications. Nat Methods 16:939

    Article  CAS  Google Scholar 

  3. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, Costello CE, Cravatt BF, Fenselau C, Garcia BA, Ge Y, Gunawardena J, Hendrickson RC, Hergenrother PJ, Huber CG, Ivanov AR, Jensen ON, Jewett MC, Kelleher NL, Kiessling LL, Krogan NJ, Larsen MR, Loo JA, Loo RRO, Lundberg E, MacCoss MJ, Mallick P, Mootha VK, Mrksich M, Muir TW, Patrie SM, Pesavento JJ, Pitteri SJ, Rodriguez H, Saghatelian A, Sandoval W, Schluter H, Sechi S, Slavoff SA, Smith LM, Snyder MP, Thomas PM, Uhlen M, Van Eyk JE, Vidal M, Walt DR, White FM, Williams ER, Wohlschlager T, Wysocki VH, Yates NA, Young NL, Zhang B (2018) How many human proteoforms are there? Nat Chem Biol 14(3):206

    Article  CAS  Google Scholar 

  4. Brown KA, Chen BF, Guardado-Alvarez TM, Lin ZQ, Hwang L, Ayaz-Guner S, Jin S, Ge Y (2019) A photocleavable surfactant for top-down proteomics. Nat Methods 16(5):417

    Article  CAS  Google Scholar 

  5. Tiambeng TN, Roberts DS, Brown KA, Zhu Y, Chen B, Wu Z, Mitchell SD, Guardado-Alvarez TM, Jin S, Ge Y (2020) Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat Commun 11(1):3903. https://doi.org/10.1038/s41467-020-17643-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen B, Brown KA, Lin Z, Ge Y (2018) Top-down proteomics: ready for prime time? Anal Chem 90(1):110–127. https://doi.org/10.1021/acs.analchem.7b04747

    Article  CAS  PubMed  Google Scholar 

  7. Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9(1):499–519. https://doi.org/10.1146/annurev-anchem-071015-041550

    Article  CAS  Google Scholar 

  8. Brown KA, Melby JA, Roberts DS, Ge Y (2020) Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 17(10):719–733. https://doi.org/10.1080/14789450.2020.1855982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, Jin S, Ge Y (2017) Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal Chem. https://doi.org/10.1021/acs.analchem.7b00380

  10. Tucholski T, Knott SJ, Chen B, Pistono P, Lin Z, Ge Y (2019) A top-down proteomics platform coupling serial size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 91(6):3835–3844. https://doi.org/10.1021/acs.analchem.8b04082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaffer LV, Tucholski T, Shortreed MR, Ge Y, Smith LM (2019) Intact-mass analysis facilitating the identification of large human heart proteoforms. Anal Chem 91(17):10937–10942. https://doi.org/10.1021/acs.analchem.9b02343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Compton PD, Zamdborg L, Thomas PM, Kelleher NL (2011) On the scalability and requirements of whole protein mass spectrometry. Anal Chem 83(17):6868–6874. https://doi.org/10.1021/ac2010795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doucette AA, Tran JC, Wall MJ, Fitzsimmons S (2011) Intact proteome fractionation strategies compatible with mass spectrometry. Expert Rev Proteomics 8(6):787–800. https://doi.org/10.1586/epr.11.67

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Ge Y (2013) Ultrahigh pressure fast size exclusion chromatography for top-down proteomics. Proteomics 13(17):2563–2566. https://doi.org/10.1002/pmic.201200594

    Article  CAS  PubMed  Google Scholar 

  15. Alpert AJ (2016) Protein fractionation and enrichment prior to proteomics sample preparation. In: Mirzaei H, Carrasco M (eds) Modern proteomics - sample preparation, analysis and practical applications, vol 919. Advances in Experimental Medicine and Biology, pp 23–41. https://doi.org/10.1007/978-3-319-41448-5_2

    Chapter  Google Scholar 

  16. Hong P, Koza S, Bouvier ESP (2012) Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35(20):2923–2950. https://doi.org/10.1080/10826076.2012.743724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hengel SM, Sanderson R, Valliere-Douglass J, Nicholas N, Leiske C, Alley SC (2014) Measurement of in vivo drug load distribution of cysteine-linked antibody–drug conjugates using microscale liquid chromatography mass spectrometry. Anal Chem 86(7):3420–3425. https://doi.org/10.1021/ac403860c

    Article  CAS  PubMed  Google Scholar 

  18. Wu Z, Roberts DS, Melby JA, Wenger K, Wetzel M, Gu Y, Ramanathan SG, Bayne EF, Liu X, Sun R, Ong IM, McIlwain SJ, Ge Y (2020) MASH explorer: a universal software environment for top-down proteomics. J Proteome Res 19(9):3867–3876. https://doi.org/10.1021/acs.jproteome.0c00469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guner H, Close PL, Cai W, Zhang H, Peng Y, Gregorich ZR, Ge Y (2014) MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J Am Soc Mass Spectrom 25(3):464

    Article  CAS  Google Scholar 

  20. Cai W, Guner H, Gregorich ZR, Chen AJ, Ayaz-Guner S, Peng Y, Valeja SG, Liu X, Ge Y (2016) MASH Suite Pro: a comprehensive software tool for top-down proteomics. Mol Cell Proteomics 15(2):703–714. https://doi.org/10.1074/mcp.o115.054387

    Article  CAS  PubMed  Google Scholar 

  21. Cesnik AJ, Shortreed MR, Schaffer LV, Knoener RA, Frey BL, Scalf M, Solntsev SK, Dai Y, Gasch AP, Smith LM (2018) Proteoform Suite: software for constructing, quantifying, and visualizing proteoform families. J Proteome Res 17(1):568–578. https://doi.org/10.1021/acs.jproteome.7b00685

    Article  CAS  PubMed  Google Scholar 

  22. Schaffer LV, Shortreed MR, Cesnik AJ, Frey BL, Solntsev SK, Scalf M, Smith LM (2018) Expanding proteoform identifications in top-down proteomic analyses by constructing proteoform families. Anal Chem 90(2):1325–1333. https://doi.org/10.1021/acs.analchem.7b04221

    Article  CAS  PubMed  Google Scholar 

  23. Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11(4):320

    Article  CAS  Google Scholar 

  24. Kou Q, Xun L, Liu X (2016) TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 32(22):3495

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Sirotkin Y, Shen Y, Anderson G, Tsai YS, Ting YS, Goodlett DR, Smith RD, Bafna V, Pevzner PA (2012) Protein identification using top-down spectra. Mol Cell Proteomics 11(6):M111.008524

    Article  Google Scholar 

  26. Sun RX, Luo L, Wu L, Wang RM, Zeng WF, Chi H, Liu C, He SM (2016) pTop 1.0: a high-accuracy and high-efficiency search engine for intact protein identification. Anal Chem 88(6):3082

    Article  CAS  Google Scholar 

  27. Park J, Piehowski PD, Wilkins C, Zhou M, Mendoza J, Fujimoto GM, Gibbons BC, Shaw JB, Shen Y, Shukla AK, Moore RJ, Liu T, Petyuk VA, Tolic N, Pasa-Tolic L, Smith RD, Payne SH, Kim S (2017) Informed-proteomics: open-source software package for top-down proteomics. Nat Methods 14(9):909

    Article  CAS  Google Scholar 

  28. Regnier FE, Gooding KM (1980) High-performance liquid chromatography of proteins. Anal Biochem 103(1):1–25. https://doi.org/10.1016/0003-2697(80)90229-8

    Article  CAS  PubMed  Google Scholar 

  29. Brown KA, Tucholski T, Alpert AJ, Eken C, Wesemann L, Kyrvasilis A, Jin S, Ge Y (2020) Top-down proteomics of endogenous membrane proteins enabled by cloud point enrichment and multidimensional liquid chromatography–mass spectrometry. Anal Chem 92(24):15726–15735. https://doi.org/10.1021/acs.analchem.0c02533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmid FX (2001) Biological macromolecules: UV-visible spectrophotometry. e LS

    Google Scholar 

  31. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak M-Y, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Inbar Y, Dorrestein PC, Wynne C, Edwards N, Souda P, Whitelegge JP, Bafna V, Pevzner PA (2010) Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol Cell Proteomics 9(12):2772

    Article  CAS  Google Scholar 

  33. Jin Y, Wei L, Cai W, Lin Z, Wu Z, Peng Y, Kohmoto T, Moss RL, Ge Y (2017) Complete characterization of cardiac myosin heavy chain (223 kDa) enabled by size-exclusion chromatography and middle-down mass spectrometry. Anal Chem 89(9):4922–4930. https://doi.org/10.1021/acs.analchem.7b00113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu Z, Jin Y, Chen B, Gugger MK, Wilkinson-Johnson CL, Tiambeng TN, Jin S, Ge Y (2019) Comprehensive characterization of the recombinant catalytic subunit of cAMP-dependent protein kinase by top-down mass spectrometry. J Am Soc Mass Spectrom 30(12):2561–2570. https://doi.org/10.1021/jasms.8b06294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin Y, Lin Z, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y (2019) Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. MAbs 11(1):106–115. https://doi.org/10.1080/19420862.2018.1525253

    Article  CAS  PubMed  Google Scholar 

  36. Lin Z, Guo F, Gregorich ZR, Sun R, Zhang H, Hu Y, Shanmuganayagam D, Ge Y (2018) Comprehensive characterization of swine cardiac troponin T proteoforms by top-down mass spectrometry. J Am Soc Mass Spectrom 29(6):1284–1294. https://doi.org/10.1021/jasms.8b05834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tucholski T, Cai W, Gregorich ZR, Bayne EF, Mitchell SD, McIlwain SJ, de Lange WJ, Wrobbel M, Karp H, Hite Z, Vikhorev PG, Marston SB, Lal S, Li A, dos Remedios C, Kohmoto T, Hermsen J, Ralphe JC, Kamp TJ, Moss RL, Ge Y (2020) Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proc Natl Acad Sci 117(40):24691. https://doi.org/10.1073/pnas.2006764117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen B, Guo X, Tucholski T, Lin Z, McIlwain S, Ge Y (2017) The impact of phosphorylation on electron capture dissociation of proteins: a top-down perspective. J Am Soc Mass Spectrom 28(9):1805–1814. https://doi.org/10.1007/s13361-017-1710-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin Y, Diffee GM, Colman RJ, Anderson RM, Ge Y (2019) Top-down mass spectrometry of sarcomeric protein post-translational modifications from non-human primate skeletal muscle. J Am Soc Mass Spectrom 30(12):2460

    Article  CAS  Google Scholar 

  40. Peng Y, Gregorich ZR, Valeja SG, Zhang H, Cai W, Chen YC, Guner H, Chen AJ, Schwahn DJ, Hacker TA, Liu X, Ge Y (2014) Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction. Mol Cell Proteomics 13(10):2752–2764. https://doi.org/10.1074/mcp.M114.040675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Trisha Tucholski for helpful discussions. This work was supported by NIH R01 GM117058 and NIH R01 GM125085 (to YG). YG also would like to acknowledge R01 HL096971 and S10 OD018475. TNT would like to acknowledge support from the NIH Chemistry-Biology Interface Training Program, T32 GM008505. JAM would like to acknowledge support from the Training Program in Translational Cardiovascular Science, T32 HL007936-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tiambeng, T.N., Wu, Z., Melby, J.A., Ge, Y. (2022). Size Exclusion Chromatography Strategies and MASH Explorer for Large Proteoform Characterization. In: Sun, L., Liu, X. (eds) Proteoform Identification. Methods in Molecular Biology, vol 2500. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2325-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2325-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2324-4

  • Online ISBN: 978-1-0716-2325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics