Skip to main content

Gut Microbes and Drosophila Behavior

  • Protocol
  • First Online:
Behavioral Neurogenetics

Part of the book series: Neuromethods ((NM,volume 181))

Abstract

Gut microbiota plays an essential role in gut–brain interactions. From insect to mammals, studies using germ-free animals have demonstrated that indigenous host microbes influence emotional activities, stress, and sexual behaviors. In addition, microbes appear to govern human mental disorders such as autism and depression. Bacterial infections of the gut also influence host behaviors. For example, food poisoning causes the cessation of food intake behavior. Interestingly, intestinal parasites facilitate their transmission by manipulating host behaviors. However, the underlying mechanisms of how gut microbes modulate brain functions remain to be elucidated. Drosophila melanogaster is an effective animal model in neurobiology, particularly the genetic dissection of instinctive behaviors. Here, we provide detailed methods of working with gut bacteria—endogenous as well as infectious—for Drosophila neurobiologists who are interested in microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brower DR (1898) Auto-intoxication in its relations to the diseases of the nervous system. J Am Med Assoc 11:575–577

    Article  Google Scholar 

  2. Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I – autointoxication revisited. Gut Pathog 5:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mayer EA (2011) Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 12:453–466

    Article  CAS  PubMed  Google Scholar 

  4. Tsurugizawa T et al (2009) Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. Gastroenterology 137:262–273

    Article  PubMed  Google Scholar 

  5. Fukudo S, Nomura T, Hongo M (1998) Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut 42:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kano M et al (2017) Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci Rep 7:12425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157

    Article  CAS  PubMed  Google Scholar 

  8. Nässel DR, Winther ÅME (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104

    Article  PubMed  CAS  Google Scholar 

  9. Elphick MR, Mirabeau O, Larhammar D (2018) Evolution of neuropeptide signalling systems. J Exp Biol 221:jeb151092

    Article  PubMed  PubMed Central  Google Scholar 

  10. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  12. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361:k2179

    Article  PubMed  PubMed Central  Google Scholar 

  15. Skelly AN, Sato Y, Kearney S, Honda K (2019) Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19:305–323

    Article  CAS  PubMed  Google Scholar 

  16. Foster JA, Neufeld K-AM (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  PubMed  Google Scholar 

  17. Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sudo N et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tofalo R, Cocchi S, Suzzi G (2019) Polyamines and gut microbiota. Front Nutr 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dalile B, Oudenhove LV, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol 16:461–478

    Article  Google Scholar 

  22. Kuwahara A et al (2020) Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system. Biomed Res 41:199–216

    Article  CAS  PubMed  Google Scholar 

  23. Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Racké K, Reimann A, Schwörer H, Kilbinger H (1995) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73:83–87

    Article  Google Scholar 

  25. Reigstad CS et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  PubMed  Google Scholar 

  26. Sugisawa E et al (2020) RNA sensing by gut piezo1 is essential for systemic serotonin synthesis. Cell 182:609–624.e21

    Article  CAS  PubMed  Google Scholar 

  27. Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210:357–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuraishi T, Kenmoku H, Kurata S (2015) From mouth to anus: functional and structural relevance of enteric neurons in the Drosophila melanogaster gut. Insect Biochem Mol 67:21–26

    Article  CAS  Google Scholar 

  29. Kenmoku H, Ishikawa H, Ote M, Kuraishi T, Kurata S (2016) A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults. J Exp Biol 219:2331–2339

    PubMed  Google Scholar 

  30. Hadjieconomou D et al (2020) Enteric neurons increase maternal food intake during reproduction. Nature 587:1–5

    Article  CAS  Google Scholar 

  31. Veenstra JA, Agricola H-J, Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334:499–516

    Article  CAS  PubMed  Google Scholar 

  32. Guo X et al (2019) The cellular diversity and transcription factor code of Drosophila enteroendocrine cells. Cell Rep 29:4172–4185.e5

    Article  CAS  PubMed  Google Scholar 

  33. Kuraishi T, Hori A, Kurata S (2013) Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 4:375

    Article  PubMed  PubMed Central  Google Scholar 

  34. Broderick N, Broderick NA, Lemaitre B (2014) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321

    Article  Google Scholar 

  35. Thompson GR, Trexler PC (1971) Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut 12:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uzbay T (2019) Germ-free animal experiments in the gut microbiota studies. Curr Opin Pharmacol 49:6–10

    Article  CAS  PubMed  Google Scholar 

  37. Neyen C, Bretscher AJ, Binggeli O, Lemaitre B (2014) Methods to study Drosophila immunity. Methods 68:116–128

    Article  CAS  PubMed  Google Scholar 

  38. Koyle ML et al (2016) Rearing the fruit fly Drosophila melanogaster under axenic and gnotobiotic conditions. J Vis Exp 30(113):54219

    Google Scholar 

  39. Shin SC et al (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  40. Storelli G et al (2011) Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403–414

    Article  CAS  PubMed  Google Scholar 

  41. Sharon G et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lizé A, McKay R, Lewis Z (2014) Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J 8:469–477

    Article  PubMed  Google Scholar 

  43. Najarro MA, Sumethasorn M, Lamoureux A, Turner TL (2015) Choosing mates based on the diet of your ancestors: replication of non-genetic assortative mating in Drosophila melanogaster. PeerJ 3:e1173

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leftwich PT, Clarke NVE, Hutchings MI, Chapman T (2017) Gut microbiomes and reproductive isolation in Drosophila. Proc Natl Acad Sci 114:12767–12772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Venu I et al (2014) Social attraction mediated by fruit flies’ microbiome. J Exp Biol 217:1346–1352

    Article  PubMed  Google Scholar 

  46. Farine J-P, Habbachi W, Cortot J, Roche S, Ferveur J-F (2017) Maternally-transmitted microbiota affects odor emission and preference in Drosophila larva. Sci Rep 7:6062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fischer CN et al (2017) Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. elife 6:213

    Google Scholar 

  48. Wong AC-N et al (2017) Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 27:2397–2404.e4

    Article  CAS  PubMed  Google Scholar 

  49. Qiao H, Keesey IW, Hansson BS, Knaden M (2019) Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. J Exp Biol 222:jeb192500

    Article  PubMed  Google Scholar 

  50. Leitão-Gonçalves R et al (2017) Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15:e2000862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Schretter CE et al (2018) A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Selkrig J et al (2018) The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors. Sci Rep 8:10646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Silva V et al (2021) The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol 224:jeb233619

    PubMed  PubMed Central  Google Scholar 

  54. Chen K et al (2019) Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25(4):537–552.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goehler LE et al (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344

    Article  PubMed  Google Scholar 

  56. Lyte M, Li W, Opitz N, Gaykema RPA, Goehler LE (2006) Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 89:350–357

    Article  CAS  PubMed  Google Scholar 

  57. Vyas A, Kim S-K, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci 104:6442–6447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Animal behavior and the microbiome. Science 338:198–199

    Article  CAS  PubMed  Google Scholar 

  59. Vodovar N et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA 102:11414–11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Opota O et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci 108:15966–15971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12:60–70

    Article  CAS  PubMed  Google Scholar 

  63. Nonaka S et al (2020) Molecular and functional analysis of pore-forming toxin Monalysin from Entomopathogenic bacterium Pseudomonas entomophila. Front Immunol 11:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila life span enhancement by exogenous bacteria. Proc Natl Acad Sci 101:12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ryu J-H et al (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  67. Bakula M (1969) The persistence of a microbial flora during post-embryogenesis of Drosophila melanogaster. J Invertebr Pathol 14:365–374

    Article  CAS  PubMed  Google Scholar 

  68. Saridaki A, Bourtzis K (2010) Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 13:67–72

    Article  CAS  PubMed  Google Scholar 

  69. Ote M, Ueyama M, Yamamoto D (2016) Wolbachia protein TomO targets nanos mRNA and restores germ stem cells in Drosophila sex-lethal mutants. Curr Biol 26:2223–2232

    Article  CAS  PubMed  Google Scholar 

  70. Arbuthnott D, Levin TC, Promislow DEL (2016) The impacts of Wolbachia and the microbiome on mate choice in Drosophila melanogaster. J Evol Biol 29:461–468

    Article  CAS  PubMed  Google Scholar 

  71. Simhadri RK et al (2017) The gut commensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. MSphere 2:e00287-17

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chrostek E et al (2013) Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9:e1003896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kenmoku H, Hori A, Kuraishi T, Kurata S (2017) A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 10:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hori A, Kurata S, Kuraishi T (2018) Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus. Biochem Biophys Res Commun 495:1–6

    Article  CAS  Google Scholar 

  75. Wong CNA et al (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 13:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gordon HA (1960) The germ-free animal. Am J Dig Dis 5:841–867

    Article  CAS  PubMed  Google Scholar 

  77. Gustafsson BE (1959) Lightweight stainless steel systems for rearing germfree animals. Ann N Y Acad Sci 78:17–28

    Article  CAS  PubMed  Google Scholar 

  78. Griffiths LA, Barrow A (1972) Metabolism of flavonoid compounds in germ-free rats. Biochem J 130:1161–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Meyer RC, Bohl EH, Kohler EM (1964) Procurement and maintenance of germ-free swine for microbiological investigations. Appl Microbiol 12:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trexler PC, Reynolds LI (1957) Flexible film apparatus for the rearing and use of germfree animals. Appl Microbiol 5:406–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Douglas AE (2018) Contradictory results in microbiome science exemplified by recent Drosophila research. MBio 9:854

    Article  Google Scholar 

  82. Lee H-Y, Lee S-H, Lee J-H, Lee W-J, Min K-J (2019) The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging 11:4611–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kurokawa K et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morita H et al (2007) An improved DNA isolation method for metagenomic analysis of the microbial flora of the human intestine. Microbes Environ 22:214–222

    Article  Google Scholar 

  85. Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kuraishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kadoguchi, H., Hori, A., Kuraishi, T. (2022). Gut Microbes and Drosophila Behavior. In: Yamamoto, D. (eds) Behavioral Neurogenetics. Neuromethods, vol 181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2321-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2321-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2320-6

  • Online ISBN: 978-1-0716-2321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics