Skip to main content

Production of a Chimeric Mouse–Fish Monoclonal Antibody by the CRISPR/Cas9 Technology

  • Protocol
  • First Online:
Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2498))

Abstract

The CRISPR/Cas9 system, a defense mechanism naturally occurring in prokaryotes, has been recently repurposed as an RNA-guided DNA targeting platform and widely used as a powerful tool for genome editing. Here we describe how to modify the carboxy-terminal region, called Fragment crystallizable (Fc) region, of a murine monoclonal antibody by replacing the heavy chain constant exons with those from a teleost fish antibody by the CRISPR/Cas9 system. We outline optimal conditions for knockout and knockin mechanisms to edit the Immunoglobulin heavy chain (IgH) constant region gene locus in a murine hybridoma cell line. A chimeric mouse–fish monoclonal antibody can be successfully produced by hybridoma cell lines engineered according to this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  2. Frenzel A, Hust M, Schirrmann T (2013) Expression of recombinant antibodies. Front Immunol 4:217

    Article  Google Scholar 

  3. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  4. Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  Google Scholar 

  5. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  6. Bikard D, Jiag W, Samai P et al (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437

    Article  CAS  Google Scholar 

  7. Cheong TC, Compagno M, Chiarle R (2016) Editing of mouse and human immunoglobulin genes by CRISPR/Cas9 system. Nat Commun 7:10934

    Article  CAS  Google Scholar 

  8. Pogson M, Parola C, Kelton WJ et al (2016) Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat Commun 7:12535

    Article  CAS  Google Scholar 

  9. Khoshnejad M, Brenner JS, Motley W et al (2018) Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9. Sci Rep 8:1760

    Article  Google Scholar 

  10. Gibson D, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  11. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123

    Article  CAS  Google Scholar 

  12. Qiu P, Shandilya H, D’Alessio JM et al (2004) Mutation detection using surveyor nuclease. BioTechniques 36:702–707

    Article  CAS  Google Scholar 

  13. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Coscia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ametrano, A., Coscia, M.R. (2022). Production of a Chimeric Mouse–Fish Monoclonal Antibody by the CRISPR/Cas9 Technology. In: Verde, C., Giordano, D. (eds) Marine Genomics. Methods in Molecular Biology, vol 2498. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2313-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2313-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2312-1

  • Online ISBN: 978-1-0716-2313-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics