Skip to main content

Extracting Significant Comorbid Diseases from MeSH Index of PubMed

  • Protocol
  • First Online:
Biomedical Text Mining

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2496))

Abstract

Text mining is an important research area to be explored in terms of understanding disease associations and have an insight in disease comorbidities. The reason for comorbid occurrence in any patient may be genetic or molecular interference from any other processes. Comorbidity and multimorbidity may be technically different, yet still are inseparable in studies. They have overlapping nature of associations and hence can be integrated for a more rational approach. The association rule generally used to determine comorbidity may also be helpful in novel knowledge prediction or may even serve as an important tool of assessment in surgical cases. Another approach of interest may be to utilize biological vocabulary resources like UMLS/MeSH across a patient health information and analyze the interrelationship between different health conditions. The protocol presented here can be utilized for understanding the disease associations and analyze at an extensive level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park J, Lee D-S, Christakis NA, Barabási A-L (2009) The impact of cellular networks on disease comorbidity. Mol Syst Biol 5:262. https://doi.org/10.1038/msb.2009.16

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rubio-Perez C, Guney E, Aguilar D, Piñero J, Garcia-Garcia J, Iadarola B, Sanz F, Fernandez-Fuentes N, Furlong LI, Oliva B (2017) Genetic and functional characterization of disease associations explains comorbidity. Sci Rep 7:6207. https://doi.org/10.1038/s41598-017-04939-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akram P, Liao L (2017) Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome. BMC Genomics 18:902. https://doi.org/10.1186/s12864-017-4272-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhong Q, Simonis N, Li Q-R et al (2009) Edgetic perturbation models of human inherited disorders. Mol Syst Biol 5:321. https://doi.org/10.1038/msb.2009.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pouladi N, Achour I, Li H, Berghout J, Kenost C, Gonzalez-Garay ML, Lussier YA (2016) Biomechanisms of comorbidity: reviewing integrative analyses of multi-omics datasets and electronic health records. Yearb Med Inform:194–206. https://doi.org/10.15265/IY-2016-040

  6. Gutiérrez-Sacristán A, Bravo À, Giannoula A, Mayer MA, Sanz F, Furlong LI (2018) comoRbidity: an R package for the systematic analysis of disease comorbidities. Bioinformatics 34:3228–3230. https://doi.org/10.1093/bioinformatics/bty315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Battaglia C, Venturin M, Sojic A, Jesuthasan N, Orro A, Spinelli R, Musicco M, De Bellis G, Adorni F (2019) Candidate genes and MiRNAs linked to the inverse relationship between cancer and Alzheimer’s disease: insights from data mining and enrichment analysis. Front Genet 10:846. https://doi.org/10.3389/fgene.2019.00846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jakovljević M, Ostojić L (2013) Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr Danub 25(Suppl 1):18–28

    PubMed  Google Scholar 

  9. Jensen PB, Jensen LJ, Brunak S (2012) Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 13:395–405. https://doi.org/10.1038/nrg3208

    Article  CAS  PubMed  Google Scholar 

  10. Kirk IK, Simon C, Banasik K et al (2019) Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining. Elife 8:e44941. https://doi.org/10.7554/eLife.44941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng C, Xu R (2018) Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data. BMC Bioinformatics 19:500. https://doi.org/10.1186/s12859-018-2468-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fox RJ, Miller DH, Phillips JT et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367:1087–1097. https://doi.org/10.1056/NEJMoa1206328

    Article  CAS  PubMed  Google Scholar 

  13. Marquis-Gravel G, Robertson H, Jones WS, Riley D, Ford DE, Crenshaw D, Joosten YA, Rudov L, Hernandez AF, Hess R (2021) Streamlining the institutional review board process in pragmatic randomized clinical trials: challenges and lessons learned from the aspirin dosing: a patient-centric trial assessing benefits and long-term effectiveness (ADAPTABLE) trial. Trials 22:90. https://doi.org/10.1186/s13063-021-05026-w

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kolling ML, Furstenau LB, Sott MK, Rabaioli B, Ulmi PH, Bragazzi NL, Tedesco LPC (2021) Data Mining in Healthcare: applying strategic intelligence techniques to depict 25 years of research development. Int J Environ Res Public Health 18(6):3099. https://doi.org/10.3390/ijerph18063099

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mull HJ, Stolzmann KL, Shin MH, Kalver E, Schweizer ML, Branch-Elliman W (2020) Novel method to flag cardiac implantable device infections by integrating text mining with structured data in the veterans health Administration’s electronic medical record. JAMA Netw Open 3:e2012264. https://doi.org/10.1001/jamanetworkopen.2020.12264

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mehta HB, Yong S, Sura SD, Hughes BD, Kuo Y-F, Williams SB, Tyler DS, Riall TS, Goodwin JS (2019) Development of comorbidity score for patients undergoing major surgery. Health Serv Res 54:1223–1232. https://doi.org/10.1111/1475-6773.13209

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Sarkar IN, Chen ES (2014) PubMedMiner: mining and visualizing MeSH-based associations in PubMed. AMIA Annu Symp Proc 2014:1990–1999. https://doi.org/10.1038/msb.2009.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Islam MS, Hasan MM, Wang X, Germack HD, Noor-E-Alam M (2018) A systematic review on healthcare analytics: application and theoretical perspective of data mining. Healthcare (Basel) 6(2):54. https://doi.org/10.3390/healthcare6020054

    Article  Google Scholar 

  19. Schuyler PL, Hole WT, Tuttle MS, Sherertz DD (1993) The UMLS Metathesaurus: representing different views of biomedical concepts. Bull Med Libr Assoc 81:217–222

    CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Sappagh S, Franda F, Ali F, Kwak K-S (2018) SNOMED CT standard ontology based on the ontology for general medical science. BMC Med Inform Decis Mak 18:76. https://doi.org/10.1186/s12911-018-0651-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fuchs NE, Kaljurand K, Kuhn T (2008) Attempto controlled english for knowledge representation. In: Baroglio C, Bonatti PA, Małuszyński J, Marchiori M, Polleres A, Schaffert S (eds) Reasoning Web. Lecture Notes in Computer Science, vol 5224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85658-0_3

    Chapter  Google Scholar 

  22. Stepien P, Johnson GN (2018) Plastid terminal oxidase requires translocation to the grana stacks to act as a sink for electron transport. Proc Natl Acad Sci U S A 115:9634–9639. https://doi.org/10.1073/pnas.1719070115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Bielinski SJ, Sohn S, Murphy S, Wagholikar KB, Jonnalagadda SR, Ravikumar KE, Wu ST, Kullo IJ, Chute CG (2013) An information extraction framework for cohort identification using electronic health records. AMIA Jt Summits Transl Sci Proc 2013:149–153. https://doi.org/10.1073/pnas.1719070115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anand, D., Manoharan, S., Iyyappan, O.R., Anand, S., Raja, K. (2022). Extracting Significant Comorbid Diseases from MeSH Index of PubMed. In: Raja, K. (eds) Biomedical Text Mining. Methods in Molecular Biology, vol 2496. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2305-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2305-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2304-6

  • Online ISBN: 978-1-0716-2305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics