Skip to main content

Ancestral Sequence Reconstruction and Alternate Amino Acid States Guide Protein Library Design for Directed Evolution

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Engineered proteins possess nearly limitless possibilities in medical and industrial applications but finding a precise amino acid sequence for these applications is challenging. A robust approach for discovering protein sequences with a desired functionality uses a library design method in which combinations of mutations are applied to a robust starting point. Determining useful mutations can be tortuous, yet rewarding; in this chapter, we present a novel library design method that uses information provided by ancestral sequence reconstruction (ASR) to create a library likely to have stable proteins with diverse function. ASR computational tools use a multi-sequence alignment of homologous proteins and an evolutionary model to estimate the protein sequences of the numerous common ancestors. For all ancestors, these tools calculate the probability of every amino acid occurring at each position within the sequence alignment. The alternate amino acid states at individual positions corelate to a region of stability in sequence space around the ancestral sequence which can inform site-wise diversification within a combinatorial library. The method presented in this chapter balances the quality of results, the computational resources needed, and ease of use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science 329:309–313

    Article  CAS  Google Scholar 

  2. Hyster TK, Knörr L, Ward TR et al (2012) Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338:500–503

    Article  CAS  Google Scholar 

  3. Coelho PS, Brustad EM, Kannan A et al (2013) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339:307–310

    Article  CAS  Google Scholar 

  4. Chen F, Gaucher EA, Leal NA et al. (2010) Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1948–1953. https://doi.org/10.1073/pnas.0908463107

  5. Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707

    Article  CAS  Google Scholar 

  6. Risso VA, Gavira JA, Sanchez-Ruiz JM (2014) Thermostable and promiscuous Precambrian proteins. Environ Microbiol 16:1485–1489

    Article  CAS  Google Scholar 

  7. Nguyen V, Wilson C, Hoemberger M et al (2017) Evolutionary drivers of thermoadaptation in enzyme catalysis. Science 355:289–294

    Article  CAS  Google Scholar 

  8. Bloom JD, Labthavikul ST, Otey CR et al (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103:5869–5874

    Article  CAS  Google Scholar 

  9. Risso VA, Gavira JA, Mejia-Carmona DF et al (2013) Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J Am Chem Soc 135:2899–2902

    Article  CAS  Google Scholar 

  10. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–1717

    Article  CAS  Google Scholar 

  11. Bar-Rogovsky H, Stern A, Penn O et al (2015) Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Eng Des Sel 28:507–518

    Article  CAS  Google Scholar 

  12. Eick GN, Bridgham JT, Anderson DP et al (2017) Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol Biol Evol 34:247–261

    CAS  PubMed  Google Scholar 

  13. Wheeler LC, Harms MJ (2021) Were ancestral proteins less specific? Mol Biol Evol 38(6):1–35

    Article  Google Scholar 

  14. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  Google Scholar 

  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  16. Nguyen L-T, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  Google Scholar 

  17. Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  Google Scholar 

  18. Jacobs TM, Yumerefendi H, Kuhlman B et al (2015) SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res 43:1–9

    Article  Google Scholar 

  19. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    Article  CAS  Google Scholar 

  20. Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  Google Scholar 

  21. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  Google Scholar 

  22. Woldring DR, Holec PV, Zhou H et al (2015) High-throughput ligand discovery reveals a sitewise gradient of diversity in broadly evolved hydrophilic fibronectin domains. PLoS One 10:e0138956

    Article  Google Scholar 

  23. Woldring DR, Holec PV, Stern LA et al (2017) A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein scaffold. Biochemistry 56:1656–1671

    Article  CAS  Google Scholar 

  24. Kruziki MA, Bhatnagar S, Woldring DR et al (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22:946–956

    Article  CAS  Google Scholar 

  25. Kruziki MA, Sarma V, Hackel BJ (2018) Constrained combinatorial libraries of Gp2 proteins enhance discovery of PD-L1 binders. ACS Comb Sci 20:423–435

    Article  CAS  Google Scholar 

  26. Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. BioTechniques 48:463–465

    Article  CAS  Google Scholar 

  27. Schimming O, Fleischhacker F, Nollmann FI et al (2014) Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin. Chembiochem 15:1290–1294

    Article  CAS  Google Scholar 

  28. An Y, Ji J, Wu W et al (2005) A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR. Appl Microbiol Biotechnol 68:774–778

    Article  CAS  Google Scholar 

  29. Benatuil L, Perez JM, Belk J et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  Google Scholar 

  30. Khan RT, Musil M, Stourac J et al (2021) Fully automated ancestral sequence reconstruction using FireProtASR. Curr Protoc 1:1–13

    Article  Google Scholar 

  31. Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22:2047–2048

    Article  CAS  Google Scholar 

  32. Williams PD, Pollock DD, Blackburne BP et al (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2:0598–0605

    Article  CAS  Google Scholar 

  33. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  34. Thomas A, Cutlan R, Finnigan W et al (2019) Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2:429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Woldring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

VanAntwerp, J., Finneran, P., Dolgikh, B., Woldring, D. (2022). Ancestral Sequence Reconstruction and Alternate Amino Acid States Guide Protein Library Design for Directed Evolution. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics