Skip to main content

Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Yeast surface display is a powerful directed evolution method for developing and engineering protein molecules to attain desired properties. Here, updated protocols are presented for purposes of identification of lead binders and their affinity maturation. Large libraries are screened by magnetic bead selections followed by flow cytometric selections. Upon identification and characterization of single clones, their affinities are improved by an iterative process of mutagenesis and fluorescence-activated cell sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 18 June 2022

    In the original version of this book, Chapter 2 included the phrase “Byong H. Kang and Brianna M. Lax contributed equally with all other contributors”; however, the sentence should read “Byong H. Kang and Brianna M. Lax contributed equally to this work.” This has been rectified in the updated version of this book.

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. Brown S (1992) Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc Natl Acad Sci U S A 89:8651–8655. https://doi.org/10.1073/pnas.89.18.8651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Georgiou G, Stathopoulos C, Daugherty PS et al (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34. https://doi.org/10.1038/nbt0197-29

    Article  CAS  PubMed  Google Scholar 

  4. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942. https://doi.org/10.1073/pnas.94.10.4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  6. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408. https://doi.org/10.1016/s0014-5793(97)01026-0

    Article  CAS  PubMed  Google Scholar 

  7. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302. https://doi.org/10.1073/pnas.94.23.12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doi N, Yanagawa H (1999) STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett 457:227–230. https://doi.org/10.1016/s0014-5793(99)01041-8

    Article  CAS  PubMed  Google Scholar 

  9. Ho M, Nagata S, Pastan I (2006) Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A 103:9637–9642. https://doi.org/10.1073/pnas.0603653103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475. https://doi.org/10.1016/j.ceb.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Georgiou G (2001) Analysis of large libraries of protein mutants using flow cytometry. In: Advances in protein chemistry. Academic, pp 293–315

    Google Scholar 

  12. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37. https://doi.org/10.1021/bp990133s

    Article  CAS  PubMed  Google Scholar 

  13. Orr BA, Carr LM, Wittrup KD et al (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19:631–638. https://doi.org/10.1021/bp0200797

    Article  CAS  PubMed  Google Scholar 

  14. Mei M, Li J, Wang S et al (2019) Prompting Fab yeast surface display efficiency by ER retention and molecular chaperon co-expression. Front Bioeng Biotechnol 7:362. https://doi.org/10.3389/fbioe.2019.00362

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller KD, Pefaur NB, Baird CL (2008) Construction and screening of antigen targeted immune yeast surface display antibody libraries. Curr Protoc Cytom Chapter 4:Unit 4.7. https://doi.org/10.1002/0471142956.cy0407s45

    Article  Google Scholar 

  16. Feldhaus MJ, Siegel RW, Opresko LK et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170. https://doi.org/10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  17. Van Deventer JA, Kelly RL, Rajan S et al (2015) A switchable yeast display/secretion system. Protein Eng Des Sel 28:317–325. https://doi.org/10.1093/protein/gzv043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelly RL, Le D, Zhao J, Wittrup KD (2018) Reduction of nonspecificity motifs in synthetic antibody libraries. J Mol Biol 430:119–130. https://doi.org/10.1016/j.jmb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  19. Rakestraw JA, Aird D, Aha PM et al (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24:525–530. https://doi.org/10.1093/protein/gzr008

    Article  CAS  PubMed  Google Scholar 

  20. Rhiel L, Krah S, Günther R et al (2014) REAL-Select: full-length antibody display and library screening by surface capture on yeast cells. PLoS One 9:e114887. https://doi.org/10.1371/journal.pone.0114887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Beucken T, Pieters H, Steukers M et al (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294. https://doi.org/10.1016/s0014-5793(03)00602-1

    Article  PubMed  Google Scholar 

  22. Rosowski S, Becker S, Toleikis L et al (2018) A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microb Cell Factories 17:3. https://doi.org/10.1186/s12934-017-0853-z

    Article  CAS  Google Scholar 

  23. Wozniak-Knopp G, Bartl S, Bauer A et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297. https://doi.org/10.1093/protein/gzq005

    Article  CAS  PubMed  Google Scholar 

  24. Traxlmayr MW, Wozniak-Knopp G, Antes B et al (2011) Integrin binding human antibody constant domains—probing the C-terminal structural loops for grafting the RGD motif. J Biotechnol 155:193–202. https://doi.org/10.1016/j.jbiotec.2011.06.042

    Article  CAS  PubMed  Google Scholar 

  25. Traxlmayr MW, Hasenhindl C, Hackl M et al (2012) Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J Mol Biol 423:397–412. https://doi.org/10.1016/j.jmb.2012.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McMahon C, Baier AS, Pascolutti R et al (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25:289–296. https://doi.org/10.1038/s41594-018-0028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uchański T, Zögg T, Yin J et al (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9:382. https://doi.org/10.1038/s41598-018-37212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zielonka S, Weber N, Becker S et al (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245. https://doi.org/10.1016/j.jbiotec.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  29. Könning D, Rhiel L, Empting M et al (2017) Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci Rep 7:9676. https://doi.org/10.1038/s41598-017-10513-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Könning D, Hinz S, Grzeschik J et al (2018) Construction of histidine-enriched shark IgNAR variable domain antibody libraries for the isolation of pH-sensitive vNAR fragments. In: Nevoltris D, Chames P (eds) Antibody engineering: methods and protocols. Springer, New York, NY, pp 109–127

    Chapter  Google Scholar 

  31. Cabanillas-Bernal O, Dueñas S, Ayala-Avila M et al (2019) Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One 14:e0213394. https://doi.org/10.1371/journal.pone.0213394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kieke MC, Shusta EV, Boder ET et al (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci U S A 96:5651–5656. https://doi.org/10.1073/pnas.96.10.5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holler PD, Holman PO, Shusta EV et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392. https://doi.org/10.1073/pnas.080078297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chlewicki LK, Holler PD, Monti BC et al (2005) High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J Mol Biol 346:223–239. https://doi.org/10.1016/j.jmb.2004.11.057

    Article  CAS  PubMed  Google Scholar 

  35. Xu G, Tasumi S, Pancer Z (2011) Yeast surface display of lamprey variable lymphocyte receptors. Methods Mol Biol 748:21–33. https://doi.org/10.1007/978-1-61779-139-0_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151. https://doi.org/10.1006/jmbi.1998.2238

    Article  CAS  PubMed  Google Scholar 

  37. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252. https://doi.org/10.1016/j.jmb.2008.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen TF, de Picciotto S, Hackel BJ, Wittrup KD (2013) Chapter fourteen—engineering fibronectin-based binding proteins by yeast surface display. In: Keating AE (ed) Methods in enzymology. Academic, pp 303–326

    Google Scholar 

  39. Pavoor TV, Cho YK, Shusta EV (2009) Development of GFP-based biosensors possessing the binding properties of antibodies. Proc Natl Acad Sci U S A 106:11895–11900. https://doi.org/10.1073/pnas.0902828106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gera N, Hussain M, Wright RC, Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409:601–616. https://doi.org/10.1016/j.jmb.2011.04.020

    Article  CAS  PubMed  Google Scholar 

  41. Traxlmayr MW, Kiefer JD, Srinivas RR et al (2016) Strong enrichment of aromatic residues in binding sites from a charge-neutralized hyperthermostable Sso7d scaffold library. J Biol Chem 291:22496–22508. https://doi.org/10.1074/jbc.M116.741314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silverman AP, Levin AM, Lahti JL, Cochran JR (2009) Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 385:1064–1075. https://doi.org/10.1016/j.jmb.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  43. Lee C-H, Park K-J, Sung E-S et al (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci U S A 107:9567–9571. https://doi.org/10.1073/pnas.1001541107

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stern LA, Lown PS, Kobe AC et al (2019) Cellular-based selections aid yeast-display discovery of genuine cell-binding ligands: targeting oncology vascular biomarker CD276. ACS Comb Sci 21:207–222. https://doi.org/10.1021/acscombsci.8b00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jing L, Liu J, Cui D et al (2020) Screening and production of an affibody inhibiting the interaction of the PD-1/PD-L1 immune checkpoint. Protein Expr Purif 166:105520. https://doi.org/10.1016/j.pep.2019.105520

    Article  CAS  PubMed  Google Scholar 

  46. Binz HK, Amstutz P, Kohl A et al (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582. https://doi.org/10.1038/nbt962

    Article  CAS  PubMed  Google Scholar 

  47. Kruziki MA, Bhatnagar S, Woldring DR et al (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22:946–956. https://doi.org/10.1016/j.chembiol.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106. https://doi.org/10.1016/j.abb.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  49. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mei M, Zhou Y, Peng W et al (2017) Application of modified yeast surface display technologies for non-antibody protein engineering. Microbiol Res 196:118–128. https://doi.org/10.1016/j.micres.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  51. Richman SA, Healan SJ, Weber KS et al (2006) Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel 19:255–264. https://doi.org/10.1093/protein/gzl008

    Article  CAS  PubMed  Google Scholar 

  52. Yang Z, Wan Y, Tao P et al (2019) A cell-cell interaction format for selection of high-affinity antibodies to membrane proteins. Proc Natl Acad Sci U S A 116:14971–14978. https://doi.org/10.1073/pnas.1908571116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia-Rodriguez C, Levy R, Arndt JW et al (2007) Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 25:107–116. https://doi.org/10.1038/nbt1269

    Article  CAS  PubMed  Google Scholar 

  54. Angelini A, Miyabe Y, Newsted D et al (2018) Directed evolution of broadly crossreactive chemokine-blocking antibodies efficacious in arthritis. Nat Commun 9:1461. https://doi.org/10.1038/s41467-018-03687-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaiotto T, Hufton SE (2016) Cross-neutralising nanobodies bind to a conserved pocket in the hemagglutinin stem region identified using yeast display and deep mutational scanning. PLoS One 11:e0164296. https://doi.org/10.1371/journal.pone.0164296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaiotto T, Ramage W, Ball C et al (2021) Nanobodies mapped to cross-reactive and divergent epitopes on A(H7N9) influenza hemagglutinin using yeast display. Sci Rep 11:3126. https://doi.org/10.1038/s41598-021-82356-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wadle A, Mischo A, Imig J et al (2005) Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int J Cancer 117:104–113. https://doi.org/10.1002/ijc.21147

    Article  CAS  PubMed  Google Scholar 

  58. Wadle A, Kubuschok B, Imig J et al (2006) Serological immune response to cancer testis antigens in patients with pancreatic cancer. Int J Cancer 119:117–125. https://doi.org/10.1002/ijc.21744

    Article  CAS  PubMed  Google Scholar 

  59. Cochran JR, Kim Y-S, Lippow SM et al (2006) Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 19:245–253. https://doi.org/10.1093/protein/gzl006

    Article  CAS  PubMed  Google Scholar 

  60. Rao BM, Girvin AT, Ciardelli T et al (2003) Interleukin-2 mutants with enhanced α-receptor subunit binding affinity. Protein Eng Des Sel 16:1081–1087. https://doi.org/10.1093/protein/gzg111

    Article  CAS  Google Scholar 

  61. Rao BM, Driver I, Lauffenburger DA, Wittrup KD (2005) High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44:10696–10701. https://doi.org/10.1021/bi050436x

    Article  CAS  PubMed  Google Scholar 

  62. Shpilman M, Niv-Spector L, Katz M et al (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442. https://doi.org/10.1074/jbc.M110.196402

    Article  CAS  PubMed  Google Scholar 

  63. Kariolis MS, Miao YR, Jones DS 2nd et al (2014) An engineered Axl “decoy receptor” effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 10:977–983. https://doi.org/10.1038/nchembio.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weiskopf K, Ring AM, Ho CCM et al (2013) Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91. https://doi.org/10.1126/science.1238856

    Article  CAS  PubMed  Google Scholar 

  65. Zaretsky M, Etzyoni R, Kaye J et al (2013) Directed evolution of a soluble human IL-17A receptor for the inhibition of psoriasis plaque formation in a mouse model. Chem Biol 20:202–211. https://doi.org/10.1016/j.chembiol.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  66. Maute RL, Gordon SR, Mayer AT et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 112:E6506–E6514. https://doi.org/10.1073/pnas.1519623112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lipovsek D, Antipov E, Armstrong KA et al (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14:1176–1185. https://doi.org/10.1016/j.chembiol.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  68. Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105:17694–17699. https://doi.org/10.1073/pnas.0809851105

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404. https://doi.org/10.1073/pnas.1101046108

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fushimi T, Miura N, Shintani H et al (2013) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97:4003–4011. https://doi.org/10.1007/s00253-012-4467-4

    Article  CAS  PubMed  Google Scholar 

  71. Yi L, Gebhard MC, Li Q et al (2013) Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A 110:7229–7234. https://doi.org/10.1073/pnas.1215994110

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ostafe R, Prodanovic R, Nazor J, Fischer R (2014) Ultra-high-throughput screening method for the directed evolution of glucose oxidase. Chem Biol 21:414–421. https://doi.org/10.1016/j.chembiol.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  73. Cochran JR, Kim Y-S, Olsen MJ et al (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158. https://doi.org/10.1016/j.jim.2004.01.024

    Article  CAS  PubMed  Google Scholar 

  74. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550. https://doi.org/10.1016/j.jmb.2004.07.053

    Article  CAS  PubMed  Google Scholar 

  75. Han T, Sui J, Bennett AS et al (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259. https://doi.org/10.1016/j.bbrc.2011.04.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mata-Fink J, Kriegsman B, Yu HX et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456. https://doi.org/10.1016/j.jmb.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  77. Van Blarcom T, Rossi A, Foletti D et al (2018) Epitope mapping using yeast display and next generation sequencing. Methods Mol Biol 1785:89–118. https://doi.org/10.1007/978-1-4939-7841-0_7

    Article  CAS  PubMed  Google Scholar 

  78. Kowalsky CA, Faber MS, Nath A et al (2015) Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing *. J Biol Chem 290:26457–26470. https://doi.org/10.1074/jbc.M115.676635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wen F, Esteban O, Zhao H (2008) Rapid identification of CD4+ T-cell epitopes using yeast displaying pathogen-derived peptide library. J Immunol Methods 336:37–44. https://doi.org/10.1016/j.jim.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  80. Jiang W, Boder ET (2010) High-throughput engineering and analysis of peptide binding to class II MHC. Proc Natl Acad Sci U S A 107:13258–13263. https://doi.org/10.1073/pnas.1006344107

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rappazzo CG, Huisman BD, Birnbaum ME (2020) Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction. Nat Commun 11:4414. https://doi.org/10.1038/s41467-020-18204-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Birnbaum ME, Mendoza JL, Sethi DK et al (2014) Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–1087. https://doi.org/10.1016/j.cell.2014.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90. https://doi.org/10.1093/protein/gzl057

    Article  CAS  PubMed  Google Scholar 

  84. Cappellaro C, Baldermann C, Rachel R, Tanner W (1994) Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J 13:4737–4744. https://doi.org/10.1002/j.1460-2075.1994.tb06799.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jacobs PP, Ryckaert S, Geysens S et al (2008) Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnol Lett 30:2173–2181. https://doi.org/10.1007/s10529-008-9807-1

    Article  CAS  PubMed  Google Scholar 

  86. Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547. https://doi.org/10.1002/btpr.343

    Article  CAS  PubMed  Google Scholar 

  87. Yang X, Tang H, Song M et al (2019) Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microb Cell Factories 18:85. https://doi.org/10.1186/s12934-019-1133-x

    Article  CAS  Google Scholar 

  88. Colby DW, Kellogg BA, Graff CP et al (2004) Engineering antibody affinity by yeast surface display. In: Methods in enzymology. Academic, pp 348–358

    Google Scholar 

  89. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  90. Orcutt KD, Wittrup KD (2010) Yeast display and selections. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 207–233

    Chapter  Google Scholar 

  91. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. In: Ossipow V, Fischer N (eds) Monoclonal antibodies: methods and protocols. Humana Press, Totowa, NJ, pp 151–181

    Chapter  Google Scholar 

  92. Angelini A, Chen TF, de Picciotto S et al (2015) Protein engineering and selection using yeast surface display. In: Liu B (ed) Yeast surface display: methods, protocols, and applications. Springer, New York, NY, pp 3–36

    Chapter  Google Scholar 

  93. Lipovsek D, Lippow SM, Hackel BJ et al (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041. https://doi.org/10.1016/j.jmb.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  94. Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36. https://doi.org/10.1093/nar/gnh030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14:55–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dane Wittrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, B.H., Lax, B.M., Wittrup, K.D. (2022). Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics