Skip to main content

Differentiation of Human-Induced Pluripotent Stem Cells (hiPSCs) into Human Primordial Germ Cell-like Cells (hPGCLCs) In Vitro

  • 465 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2490)

Abstract

In humans, germ cells are specified in the extraembryonic yolk sac, at proximity of allantois, around the second week of gestation. Derivation of human germ cell-like cells (hPGCLCs) from human pluripotent cells in vitro is of a great importance for research purposes, such as disease modeling, or studying the early human germ cell development and the effect of environmental factors on this development. As it is not possible to access human embryos at early developmental stages, a two-step protocol has been proposed by Sasaki and colleagues to differentiate hPGCLCs in vitro from human pluripotent stem cells. Here, we report a detailed protocol for in vitro hPGCLCs differentiation from induced pluripotent stem cells (iPSCs).

Key words

  • Germ cell specification
  • hiPSCs
  • hiMeLCs
  • hPGCLCs

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2281-0_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2281-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17(10):585–600. https://doi.org/10.1038/nrg.2016.88

    CrossRef  CAS  PubMed  Google Scholar 

  2. Leitch HG, Tang WW, Surani MA (2013) Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 104:149–187. https://doi.org/10.1016/B978-0-12-416027-9.00005-X

    CrossRef  CAS  PubMed  Google Scholar 

  3. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584. https://doi.org/10.1016/j.cell.2009.03.014

    CrossRef  CAS  PubMed  Google Scholar 

  4. Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232(2):484–492. https://doi.org/10.1006/dbio.2001.0173

    CrossRef  CAS  PubMed  Google Scholar 

  5. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436. https://doi.org/10.1101/gad.13.4.424

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14(7):1053–1063. https://doi.org/10.1210/mend.14.7.0479

    CrossRef  CAS  PubMed  Google Scholar 

  7. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213. https://doi.org/10.1038/nature03813

    CrossRef  CAS  PubMed  Google Scholar 

  8. Magnusdottir E, Dietmann S, Murakami K, Gunesdogan U, Tang FC, Bao SQ, Diamanti E, Lao KQ, Gottgens B, Surani MA (2013) A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 15(8):905–U322. https://doi.org/10.1038/ncb2798

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1–2):253–268. https://doi.org/10.1016/j.cell.2014.12.013

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532. https://doi.org/10.1016/j.cell.2011.06.052

    CrossRef  CAS  PubMed  Google Scholar 

  11. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462(7270):222–225. https://doi.org/10.1038/nature08562

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504(7479):282–286. https://doi.org/10.1038/nature12745

    CrossRef  CAS  PubMed  Google Scholar 

  13. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17(2):178–194. https://doi.org/10.1016/j.stem.2015.06.014

    CrossRef  CAS  PubMed  Google Scholar 

  14. Sugawa F, Arauzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hubner K, Scholer HR (2015) Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 34(8):1009–1024. https://doi.org/10.15252/embj.201488049

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, Lowe MG, Kim R, Galic Z, Irie N, Surani MA, Jacobsen SE, Clark AT (2017) Germline competency of human embryonic stem cells depends on eomesodermin. Biol Reprod 97(6):850–861. https://doi.org/10.1093/biolre/iox138

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Panula S, Kurek M, Kumar P, Albalushi H, Padrell Sanchez S, Damdimopoulou P, Olofsson JI, Hovatta O, Lanner F, Stukenborg JB (2019) Human induced pluripotent stem cells from two azoospermic patients with Klinefelter syndrome show similar X chromosome inactivation behavior to female pluripotent stem cells. Hum Reprod 34(11):2297–2310. https://doi.org/10.1093/humrep/dez134

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412. https://doi.org/10.1038/nmeth.1591

    CrossRef  CAS  PubMed  Google Scholar 

  18. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57(5):976–983

    CAS  PubMed  Google Scholar 

  19. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105. https://doi.org/10.1042/0264-6021:3510095

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Åke Wibergs Foundation, Jeanssons Foundation, Swedish Research Council (Vetenskapsradet, 2018-02557), Birgitta and Carl-Axel Rydbeck research foundation, and Karolinska Institutet to Qiaolin Deng.

The figures were created by BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaolin Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Reda, A., Stukenborg, JB., Deng, Q. (2022). Differentiation of Human-Induced Pluripotent Stem Cells (hiPSCs) into Human Primordial Germ Cell-like Cells (hPGCLCs) In Vitro. In: Osteil, P. (eds) Epiblast Stem Cells. Methods in Molecular Biology, vol 2490. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2281-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2281-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2280-3

  • Online ISBN: 978-1-0716-2281-0

  • eBook Packages: Springer Protocols