Abstract
In humans, germ cells are specified in the extraembryonic yolk sac, at proximity of allantois, around the second week of gestation. Derivation of human germ cell-like cells (hPGCLCs) from human pluripotent cells in vitro is of a great importance for research purposes, such as disease modeling, or studying the early human germ cell development and the effect of environmental factors on this development. As it is not possible to access human embryos at early developmental stages, a two-step protocol has been proposed by Sasaki and colleagues to differentiate hPGCLCs in vitro from human pluripotent stem cells. Here, we report a detailed protocol for in vitro hPGCLCs differentiation from induced pluripotent stem cells (iPSCs).
Key words
- Germ cell specification
- hiPSCs
- hiMeLCs
- hPGCLCs
This is a preview of subscription content, access via your institution.
Buying options


References
Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17(10):585–600. https://doi.org/10.1038/nrg.2016.88
Leitch HG, Tang WW, Surani MA (2013) Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 104:149–187. https://doi.org/10.1016/B978-0-12-416027-9.00005-X
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584. https://doi.org/10.1016/j.cell.2009.03.014
Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232(2):484–492. https://doi.org/10.1006/dbio.2001.0173
Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436. https://doi.org/10.1101/gad.13.4.424
Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14(7):1053–1063. https://doi.org/10.1210/mend.14.7.0479
Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213. https://doi.org/10.1038/nature03813
Magnusdottir E, Dietmann S, Murakami K, Gunesdogan U, Tang FC, Bao SQ, Diamanti E, Lao KQ, Gottgens B, Surani MA (2013) A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 15(8):905–U322. https://doi.org/10.1038/ncb2798
Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1–2):253–268. https://doi.org/10.1016/j.cell.2014.12.013
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532. https://doi.org/10.1016/j.cell.2011.06.052
Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462(7270):222–225. https://doi.org/10.1038/nature08562
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504(7479):282–286. https://doi.org/10.1038/nature12745
Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17(2):178–194. https://doi.org/10.1016/j.stem.2015.06.014
Sugawa F, Arauzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hubner K, Scholer HR (2015) Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 34(8):1009–1024. https://doi.org/10.15252/embj.201488049
Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, Lowe MG, Kim R, Galic Z, Irie N, Surani MA, Jacobsen SE, Clark AT (2017) Germline competency of human embryonic stem cells depends on eomesodermin. Biol Reprod 97(6):850–861. https://doi.org/10.1093/biolre/iox138
Panula S, Kurek M, Kumar P, Albalushi H, Padrell Sanchez S, Damdimopoulou P, Olofsson JI, Hovatta O, Lanner F, Stukenborg JB (2019) Human induced pluripotent stem cells from two azoospermic patients with Klinefelter syndrome show similar X chromosome inactivation behavior to female pluripotent stem cells. Hum Reprod 34(11):2297–2310. https://doi.org/10.1093/humrep/dez134
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412. https://doi.org/10.1038/nmeth.1591
Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57(5):976–983
Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105. https://doi.org/10.1042/0264-6021:3510095
Acknowledgements
This work was supported by Åke Wibergs Foundation, Jeanssons Foundation, Swedish Research Council (Vetenskapsradet, 2018-02557), Birgitta and Carl-Axel Rydbeck research foundation, and Karolinska Institutet to Qiaolin Deng.
The figures were created by BioRender.com.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Reda, A., Stukenborg, JB., Deng, Q. (2022). Differentiation of Human-Induced Pluripotent Stem Cells (hiPSCs) into Human Primordial Germ Cell-like Cells (hPGCLCs) In Vitro. In: Osteil, P. (eds) Epiblast Stem Cells. Methods in Molecular Biology, vol 2490. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2281-0_17
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2281-0_17
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2280-3
Online ISBN: 978-1-0716-2281-0
eBook Packages: Springer Protocols