Skip to main content

Branched Proximity Hybridization Assay for the Quantification of Nanoscale Protein–Protein Proximity

  • Protocol
  • First Online:
TGF-Beta Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2488))

  • 671 Accesses

Abstract

To better quantify the nanoscale protein–protein proximity, we developed a new branched proximity hybridization assay (bPHA). In this assay, oligo-coupled target protein-binding reagents, such as aptamer, nanobody, and antibodies, are used to convert the proximity of target proteins to the proximity of a pair of designed oligos. The closely positioned oligo pair then serve as a template for a maximum of 400-fold linear signal amplification through branched DNA (bDNA). The amplified bPHA signal is recorded and quantified by flow cytometer, providing high throughput, multiplexing, and single-cell resolution for nanoscale protein proximity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kusumi A, Nakada C, Ritchie K et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378. https://doi.org/10.1146/annurev.biophys.34.040204.144637

    Article  CAS  PubMed  Google Scholar 

  2. Yang J, Reth M (2010) Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467:465–469. https://doi.org/10.1038/nature09357

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki KGN, Kasai RS, Hirosawa KM et al (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8:774–783. https://doi.org/10.1038/nchembio.1028

    Article  CAS  PubMed  Google Scholar 

  4. Rys JP, DuFort CC, Monteiro DA et al (2015) Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension. elife 4:e09300. https://doi.org/10.7554/eLife.09300

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang J, Reth M (2016) Receptor dissociation and B-cell activation. Curr Top Microbiol Immunol 393:27–43. https://doi.org/10.1007/82_2015_482

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Parajo MF, Cambi A, Torreno-Pina JA et al (2014) Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci 127:4995–5005. https://doi.org/10.1242/jcs.146340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baddeley D, Bewersdorf J (2018) Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 87:965–989. https://doi.org/10.1146/annurev-biochem-060815-014801

    Article  CAS  PubMed  Google Scholar 

  8. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487. https://doi.org/10.1146/annurev.biophys.37.032807.125842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piston DW, Kremers G-J (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414. https://doi.org/10.1016/j.tibs.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Pfleger KDG, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174. https://doi.org/10.1038/nmeth841

    Article  CAS  PubMed  Google Scholar 

  11. Hung V, Zou P, Rhee H-W et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341. https://doi.org/10.1016/j.molcel.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Söderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000. https://doi.org/10.1038/nmeth947

    Article  CAS  PubMed  Google Scholar 

  13. Mocanu M-M, Váradi T, Szöllosi J, Nagy P (2011) Comparative analysis of fluorescence resonance energy transfer (FRET) and proximity ligation assay (PLA). Proteomics 11:2063–2070. https://doi.org/10.1002/pmic.201100028

    Article  CAS  PubMed  Google Scholar 

  14. Urdea MS (1994) Branched DNA signal amplification. Nat Biotechnol 12:926–928. https://doi.org/10.1038/nbt0994-926

    Article  CAS  Google Scholar 

  15. Tsongalis GJ (2006) Branched DNA technology in molecular diagnostics. Am J Clin Pathol 126:448–453. https://doi.org/10.1309/90BU6KDXANFLN4RJ

    Article  CAS  PubMed  Google Scholar 

  16. Henning AL, Sampson JNB, McFarlin BK (2016) Measurement of low-abundance intracellular mRNA using amplified FISH staining and image-based flow cytometry. Curr Protoc Cytom 76:7.46.1–7.46.8. https://doi.org/10.1002/0471142956.cy0746s76

    Article  Google Scholar 

  17. Yin VP (2018) In situ detection of MicroRNA expression with RNAscope probes. Methods Mol Biol 1649:197–208. https://doi.org/10.1007/978-1-4939-7213-5_13

    Article  CAS  PubMed  Google Scholar 

  18. Zheng S, Sieder M, Mitterer M et al (2019) A new branched proximity hybridization assay for the quantification of nanoscale protein–protein proximity. PLoS Biol 17:e3000569. https://doi.org/10.1371/journal.pbio.3000569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631. https://doi.org/10.3390/s120100612

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salvador J-P, Vilaplana L, Marco M-P (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411:1703–1713. https://doi.org/10.1007/s00216-019-01633-4

    Article  CAS  PubMed  Google Scholar 

  21. Ståhl S, Gräslund T, Eriksson Karlström A et al (2017) Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35:691–712. https://doi.org/10.1016/j.tibtech.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  22. Bushnell S, Budde J, Catino T et al (1999) ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays. Bioinformatics 15:348–355

    Article  CAS  Google Scholar 

  23. Chanz C-A, Horn T, Ahle D, Urdea MS (1991) Improved methods for the synthesis of branched DNA (bDNA) for use as amplification multimers in bioassays. Nucleosides Nucleotides 10:389–392. https://doi.org/10.1080/07328319108046485

    Article  Google Scholar 

  24. Popp MW, Antos JM, Grotenbreg GM et al (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708. https://doi.org/10.1038/nchembio.2007.31

    Article  CAS  PubMed  Google Scholar 

  25. Popp MW-L, Antos JM, Ploegh HL (2009) Site-specific protein labeling via sortase-mediated transpeptidation. Curr Protoc Protein Sci Chapter 15:Unit 15.3–15.3.9. https://doi.org/10.1002/0471140864.ps1503s56

    Article  Google Scholar 

  26. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, J. (2022). Branched Proximity Hybridization Assay for the Quantification of Nanoscale Protein–Protein Proximity. In: Zi, Z., Liu, X. (eds) TGF-Beta Signaling. Methods in Molecular Biology, vol 2488. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2277-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2277-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2276-6

  • Online ISBN: 978-1-0716-2277-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics