Abstract
Assembly line enzymes, including polyketide synthases and nonribosomal peptide synthetases, play central roles in the construction of complex natural products. Due to the sequential biochemistry processed in each domain, the domain architecture of the assembly line enzymes strictly correlates with the product molecule. This colinearity makes assembly line enzymes an ideal target for rational reprogramming. Although many of the past engineering attempts suffered from decreased product yield, recent advancements in the bioinformatic analysis and engineering design now provide new opportunity to work on these modular megaenzymes. This chapter describes the methods for analyzing and engineering the assembly line enzymes, including module and domain analysis needed for designing the engineering of assembly line biosynthesis, and the expression vector construction with an example of two-vector heterologous expression system in Streptomyces.
Key words
- Assembly line engineering
- Heterologous expression
- Bioinformatic analysis
- Streptomyces
- Biosynthetic pathway
This is a preview of subscription content, access via your institution.
Buying options






References
Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496
Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716
Sussmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl 56:3770–3821
Moumbock AFA, Gao M, Qaseem A et al (2020) StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Res 49:D600–D604
Weissman KJ (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230
Alanjary M, Cano-Prieto C, Gross H et al (2019) Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 36:1249–1261
Nivina A, Yuet KP, Hsu J et al (2019) Evolution and diversity of assembly-line polyketide synthases. Chem Rev 119:12524–12547
Zhang L, Hashimoto T, Qin B et al (2017) Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew Chem Int Ed Engl 56:1740–1745
Bozhuyuk KAJ, Fleischhacker F, Linck A et al (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem 10:275–281
Keatinge-Clay AT (2017) Polyketide synthase modules redefined. Angew Chem Int Ed Engl 56:4658–4660
Bozhuyuk KAJ, Linck A, Tietze A et al (2019) Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 11:653–661
Hashimoto T, Hashimoto J, Kozone I et al (2018) Biosynthesis of quinolidomicin, the largest known macrolide of terrestrial origin: identification and heterologous expression of a biosynthetic gene cluster over 200 kb. Org Lett 20:7996–7999
Menzella HG, Reid R, Carney JR et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176
Walker MC, Thuronyi BW, Charkoudian LK et al (2013) Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341:1089–1094
Marsden AF, Wilkinson B, Cortes J et al (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279:199–202
Komatsu M, Komatsu K, Koiwai H et al (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396
Huo L, Hug JJ, Fu C et al (2019) Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 36:1412–1436
Zhang JJ, Tang X, Moore BS (2019) Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 36:1313–1332
Hu Z, Awakawa T, Ma Z et al (2019) Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat Commun 10:184
Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345
Zhang Y, Buchholz F, Muyrers JP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128
Zhang JJ, Yamanaka K, Tang X et al (2019) Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol 621:87–110
Fu J, Bian X, Hu S et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446
Tong Y, Whitford CM, Blin K et al (2020) CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nat Protoc 15:2470–2502
Kudo K, Hashimoto T, Hashimoto J et al (2020) In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat Commun 11:4022
Awakawa T, Zhang L, Wakimoto T et al (2014) A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J Am Chem Soc 136:9910–9913
Awakawa T, Fujioka T, Zhang L et al (2018) Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat Commun 9:3534
Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical streptomyces genetics, vol 291. John Innes Foundation, Norwich
Liu R, Deng Z, Liu T (2018) Streptomyces species: ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84
Nybo SE, Shepherd MD, Bosserman MA et al (2010) Genetic manipulation of Streptomyces species. Curr Protoc Microbiol. Chapter 10:Unit 10E 13
Rebets Y, Kormanec J, Luzhetskyy A et al (2017) Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production. Methods Mol Biol 1539:99–144
Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253
Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268
Potter SC, Luciani A, Eddy SR et al (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166
Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490
Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259
Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87
Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303
Onaka H, Taniguchi S, Ikeda H et al (2003) pTOYAMAcos, pTYM18, and pTYM19, actinomycete-Escherichia coli integrating vectors for heterologous gene expression. J Antibiot (Tokyo) 56:950–956
Komatsu M, Uchiyama T, Ōmura S et al (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651
Richter CD, Nietlispach D, Broadhurst RW et al (2008) Multienzyme docking in hybrid megasynthetases. Nat Chem Biol 4:75–81
Keatinge-Clay AT (2012) The structures of type I polyketide synthases. Nat Prod Rep 29:1050–1073
Kushnir S, Sundermann U, Yahiaoui S et al (2012) Minimally invasive mutagenesis gives rise to a biosynthetic polyketide library. Angew Chem Int Ed Engl 51:10664–10669
Miyazawa T, Hirsch M, Zhang Z et al (2020) An in vitro platform for engineering and harnessing modular polyketide synthases. Nat Commun 11:80
Sugimoto Y, Ishida K, Traitcheva N et al (2015) Freedom and constraint in engineered noncolinear polyketide assembly lines. Chem Biol 22:229–240
Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672
Yuzawa S, Deng K, Wang G et al (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth Biol 6:139–147
Acknowledgments
This work was supported by National Natural Science Foundation for Young Scientists of China (82003631) and National Natural Science Foundation of China General Program (22177092) to L.Z., Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS KAKENHI Grant Number JP16H06443, JP 20KK0173, and JP20H00490), Japan Science and Technology Agency (JST SICORP Grant No. JPMJSC1701), the New Energy and Industrial Technology Development Organization (NEDO, Grant Number JPNP20011), and AMED (Grant Number JP21ak0101164) to I.A., and JP17H04763, JP19H04641, JP21H02636, UTEC-UTokyo FSI Research Grant Program, Kato Memorial Bioscience Foundation, and The Asahi Glass Foundation, to T.A.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Zhang, L., Awakawa, T., Abe, I. (2022). Understanding and Manipulating Assembly Line Biosynthesis by Heterologous Expression in Streptomyces. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_12
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2273-5_12
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2272-8
Online ISBN: 978-1-0716-2273-5
eBook Packages: Springer Protocols