Skip to main content

CRISPR/Cas9-Based Methods for Inactivating Actinobacterial Biosynthetic Genes and Elucidating Function

  • Protocol
  • First Online:
Engineering Natural Product Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2489))

Abstract

The CRISPR/Cas9 technology allows fast and marker-less genome engineering that can be employed to study secondary metabolism in actinobacteria. Here, we report a standard experimental protocol for the deletion of a biosynthetic gene in a Streptomyces species, using the vector pCRISPomyces-2 developed by Huimin Zhao and collaborators. We also describe how carrying out metabolite analysis can reveal the putative biosynthetic function of the inactivated gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) Programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728. https://doi.org/10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  3. Huang H, Zheng G, Jiang W et al (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin Shanghai 47(4):231–243. https://doi.org/10.1093/abbs/gmv007

    Article  CAS  PubMed  Google Scholar 

  4. Tong Y, Charusanti P, Zhang L et al (2015) CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. https://doi.org/10.1021/acssynbio.5b00038

    Article  CAS  PubMed  Google Scholar 

  5. Zeng H, Wen S, Xu W et al (2015) Highly efficient editing of the Actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99(24):10575–10585. https://doi.org/10.1007/s00253-015-6931-4

    Article  CAS  PubMed  Google Scholar 

  6. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34(10):1203–1232. https://doi.org/10.1039/c7np00026j

    Article  CAS  PubMed  Google Scholar 

  7. Alberti F, Corre C (2019) Editing Streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 36(9):1237–1248. https://doi.org/10.1039/C8NP00081F

    Article  CAS  PubMed  Google Scholar 

  8. Alberti F, Leng DJ, Wilkening I et al (2019) Triggering the expression of a silent gene cluster from genetically intractable bacteria results in Scleric acid discovery. Chem Sci 10(2):453–463. https://doi.org/10.1039/c8sc03814g

    Article  CAS  PubMed  Google Scholar 

  9. Blin K, Pedersen LE, Weber T et al (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1(2):118–121. https://doi.org/10.1016/j.synbio.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  11. Muth G, Nußbaumer B, Wohlleben W et al (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes. Mol Gen Genet 219(3):341–348. https://doi.org/10.1007/BF00259605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Alberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chhun, A., Alberti, F. (2022). CRISPR/Cas9-Based Methods for Inactivating Actinobacterial Biosynthetic Genes and Elucidating Function. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2273-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2272-8

  • Online ISBN: 978-1-0716-2273-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics