Abstract
The CRISPR/Cas9 technology allows fast and marker-less genome engineering that can be employed to study secondary metabolism in actinobacteria. Here, we report a standard experimental protocol for the deletion of a biosynthetic gene in a Streptomyces species, using the vector pCRISPomyces-2 developed by Huimin Zhao and collaborators. We also describe how carrying out metabolite analysis can reveal the putative biosynthetic function of the inactivated gene.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jinek M, Chylinski K, Fonfara I et al (2012) Programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728. https://doi.org/10.1021/sb500351f
Huang H, Zheng G, Jiang W et al (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin Shanghai 47(4):231–243. https://doi.org/10.1093/abbs/gmv007
Tong Y, Charusanti P, Zhang L et al (2015) CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. https://doi.org/10.1021/acssynbio.5b00038
Zeng H, Wen S, Xu W et al (2015) Highly efficient editing of the Actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99(24):10575–10585. https://doi.org/10.1007/s00253-015-6931-4
Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34(10):1203–1232. https://doi.org/10.1039/c7np00026j
Alberti F, Corre C (2019) Editing Streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 36(9):1237–1248. https://doi.org/10.1039/C8NP00081F
Alberti F, Leng DJ, Wilkening I et al (2019) Triggering the expression of a silent gene cluster from genetically intractable bacteria results in Scleric acid discovery. Chem Sci 10(2):453–463. https://doi.org/10.1039/c8sc03814g
Blin K, Pedersen LE, Weber T et al (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1(2):118–121. https://doi.org/10.1016/j.synbio.2016.01.003
Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics: a laboratory manual. John Innes Foundation, Norwich
Muth G, Nußbaumer B, Wohlleben W et al (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes. Mol Gen Genet 219(3):341–348. https://doi.org/10.1007/BF00259605
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Chhun, A., Alberti, F. (2022). CRISPR/Cas9-Based Methods for Inactivating Actinobacterial Biosynthetic Genes and Elucidating Function. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_11
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2273-5_11
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2272-8
Online ISBN: 978-1-0716-2273-5
eBook Packages: Springer Protocols