Skip to main content

Enzymatic Photometric Assays for the Selective Detection of Halides

  • Protocol
  • First Online:
  • 578 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

Halides are substrates and products of a number of biotechnologically important enzymes like dehalogenases, halide methyltransferases, and halogenases. Therefore, the determination of halide concentrations in samples is important. The classical methods based on mercuric thiocyanate are very dangerous, produce hazardous waste, and do not discriminate between chloride, bromide, and iodide. In this chapter, we describe a detailed protocol for the determination of halide concentrations based on the haloperoxidase-catalyzed oxidation of halides. The resulting hypohalous acids are detected using commercially available colorimetric or fluorimetric probes. The biocatalytic nature of the assays allows them to be implemented in one-pot cascade reactions with halide-generating enzymes. Since chloride is ubiquitous in biological systems, we also describe convenient photometric assays for the selective detection of bromide and iodide in the presence of chloride, obviating the need for laborious dialyses to obtain halide-free enzymes and reagents.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Menon BRK, Richmond D, Menon N (2020) Halogenases for biosynthetic pathway engineering: toward new routes to naturals and non-naturals. Catal Rev:1–59. https://doi.org/10.1080/01614940.2020.1823788

  2. Janssen DB, Stucki G (2020) Perspectives of genetically engineered microbes for groundwater bioremediation. Environ Sci Processes Impacts 22(3):487–499. https://doi.org/10.1039/c9em00601j

    Article  CAS  Google Scholar 

  3. Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: biotechnological applications. Biotechnol J 8(1):32–45. https://doi.org/10.1002/biot.201100486

    Article  CAS  PubMed  Google Scholar 

  4. Dong CJ, Huang FL, Deng H, Schaffrath C, Spencer JB, O'Hagan D, Naismith JH (2004) Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427(6974):561–565. https://doi.org/10.1038/nature02280

    Article  CAS  PubMed  Google Scholar 

  5. Eustaquio AS, Pojer F, Noel JP, Moore BS (2008) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4(1):69–74. https://doi.org/10.1038/nchembio.2007.56

    Article  CAS  PubMed  Google Scholar 

  6. Neubauer PR, Widmann C, Wibberg D, Schroder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N (2018) A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One 13(5). https://doi.org/10.1371/journal.pone.0196797

  7. Gkotsi DS, Ludewig H, Sharma SV, Connolly JA, Dhaliwal J, Wang YP, Unsworth WP, Taylor RJK, McLachlan MMW, Shanahan S, Naismith JH, Goss RJM (2019) A marine viral halogenase that iodinates diverse substrates. Nat Chem 11(12):1091–1097. https://doi.org/10.1038/s41557-019-0349-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayashi T, Ligibel M, Sager E, Voss M, Hunziker J, Schroer K, Snajdrova R, Buller R (2019) Evolved aliphatic halogenases enable regiocomplementary C-H functionalization of a pharmaceutically relevant compound. Angew Chem Int Ed 58(51):18535–18539. https://doi.org/10.1002/anie.201907245

    Article  CAS  Google Scholar 

  9. Voss M, Malca SH, Buller R (2020) Exploring the biocatalytic potential of Fe/alpha-ketoglutarate-dependent halogenases. Chem Eur J 26(33):7336–7345. https://doi.org/10.1002/chem.201905752

    Article  CAS  PubMed  Google Scholar 

  10. Marek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, Takagi M, Damborsky J (2000) Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39(46):14082–14086. https://doi.org/10.1021/bi001539c

    Article  CAS  PubMed  Google Scholar 

  11. Tang Q, Grathwol CW, Aslan-Üzel AS, Wu S, Link A, Pavlidis IV, Badenhorst CPS, Bornscheuer UT (2021) Directed evolution of a halide methyltransferase enables biocatalytic synthesis of diverse SAM analogs. Angew Chem Int Ed 60(3):1524–1527. https://doi.org/10.1002/anie.202013871

    Article  CAS  Google Scholar 

  12. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47(D1):D542–D549. https://doi.org/10.1093/nar/gky1048

    Article  CAS  PubMed  Google Scholar 

  13. Aslan-Üzel AS, Beier A, Kovar D, Cziegler C, Padhi SK, Schuiten ED, Dorr M, Bottcher D, Hollmann F, Rudroff F, Mihovilovic MD, Buryska T, Damborsky J, Prokop Z, Badenhorst CPS, Bornscheuer UT (2020) An ultrasensitive fluorescence assay for the detection of halides and enzymatic dehalogenation. ChemCatChem 12(7):2032–2039. https://doi.org/10.1002/cctc.201901891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25(3):226–226. https://doi.org/10.1246/bcsj.25.226

    Article  CAS  Google Scholar 

  15. Schuiten ED, Badenhorst CPS, Palm GJ, Berndt L, Lammers M, Mican J, Bednar D, Damborsky J, Bornscheuer UT (2021) Promiscuous dehalogenase activity of the epoxide hydrolase CorEH from Corynebacterium sp. C12. ACS Catal 11(10):6113–6120. https://doi.org/10.1021/acscatal.1c00851

    Article  CAS  Google Scholar 

  16. Brestel EP (1985) Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence. Biochem Biophys Res Commun 126(1):482–488. https://doi.org/10.1016/0006-291X(85)90631-X

    Article  CAS  PubMed  Google Scholar 

  17. Flemmig J, Remmler J, Zschaler J, Arnhold J (2015) Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein. Free Radic Res 49(6):768–776. https://doi.org/10.3109/10715762.2014.999676

    Article  CAS  PubMed  Google Scholar 

  18. Chen XQ, Lee KA, Ren XT, Ryu JC, Kim G, Ryu JH, Lee WJ, Yoon J (2016) Synthesis of a highly HOCl-selective fluorescent probe and its use for imaging HOCl in cells and organisms. Nat Protoc 11(7):1219–1228. https://doi.org/10.1038/nprot.2016.062

    Article  CAS  PubMed  Google Scholar 

  19. Sokolov AV, Kostevich VA, Kozlov SO, Donskyi IS, Vlasova II, Rudenko AO, Zakharova ET, Vasilyev VB, Panasenko OM (2015) Kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines. Free Radic Res 49(6):777–789. https://doi.org/10.3109/10715762.2015.1017478

    Article  CAS  PubMed  Google Scholar 

  20. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257(7):3669–3675. https://doi.org/10.1016/S0021-9258(18)34832-4

    Article  CAS  PubMed  Google Scholar 

  21. Bozeman PM, Learn DB, Thomas EL (1990) Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. J Immunol Methods 126(1):125–133. https://doi.org/10.1016/0022-1759(90)90020-v

    Article  CAS  PubMed  Google Scholar 

  22. Senthilmohan R, Kettle AJ (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys 445(2):235–244. https://doi.org/10.1016/j.abb.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J Biol Chem 281(14):9738–9744. https://doi.org/10.1074/jbc.M512166200

    Article  CAS  PubMed  Google Scholar 

  24. Carter JN, Beatty KE, Simpson MT, Butler A (2002) Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis. J Inorg Biochem 91(1):59–69. https://doi.org/10.1016/S0162-0134(02)00400-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Q. T. thanks the China Scholarship Council for financial support of her PhD thesis project (File No.: 201606150073). A. S. A.-Ü. and E. D. S. thank the European Union (722610 ES-CAT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoffel P. S. Badenhorst , Ioannis V. Pavlidis or Uwe T. Bornscheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, Q., Aslan-Üzel, A.S., Schuiten, E.D., Badenhorst, C.P.S., Pavlidis, I.V., Bornscheuer, U.T. (2022). Enzymatic Photometric Assays for the Selective Detection of Halides. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics