Skip to main content

High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2477))

Abstract

RNA biogenesis in eukaryotic cells is a tightly regulated multilayered process in which a diverse set of players act in an orchestrated manner via complex molecular interactions to secure the initial flow of gene expression. Transcription from DNA to RNA is the essential first step in RNA biogenesis, and consists of three main phases: initiation, elongation, and termination. In each phase, transcription factors act on RNA polymerases to modulate their passage along the DNA template in a very precise manner, governed by molecular mechanisms, some of which are not yet fully understood. Genome-scale run-on-based methodologies have been developed with the aim of mapping the position of transcriptionally engaged RNA polymerases. Among them, the BioGRO methodology has been instrumental in advancing our understanding of the transcriptional dynamics in yeast. Here we take the previously known BioGRO method further by coupling it with deep sequencing. BioGRO-seq maps elongating RNA polymerases along the genome with strand specificity and single-nucleotide resolution. BioGRO-seq profiling provides insights into the biogenesis and regulation of not just the canonical protein-coding transcriptome, but also into the often more challenging to study noncoding and unstable transcriptome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Coulon A, Chow CC, Singer RH, Larson DR (2013) Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet 14(8):572–584

    Article  CAS  PubMed  Google Scholar 

  2. Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF (2021) A high-resolution protein architecture of the budding yeast genome. Nature 592(7853):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dangkulwanich M, Ishibashi T, Bintu L, Bustamante CJ (2014) Molecular mechanisms of transcription through single-molecule experiments. Chem Rev 114(6):3203–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pérez-Ortín JE, de Miguel-Jiménez L, Chávez S (2012) Genome-wide studies of mRNA synthesis and degradation in eukaryotes. Biochim Biophys Acta 1819(6):604–615

    Article  PubMed  Google Scholar 

  5. Visa N, Jordán-Pla A (2018) ChIP and ChIP-related techniques: expanding the fields of application and improving ChIP performance. Methods Mol Biol 1689:1–7

    Article  CAS  PubMed  Google Scholar 

  6. Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469(7330):368–373

    Article  CAS  PubMed  Google Scholar 

  7. Carrillo-Oesterreich F, Preibisch S, Neugebauer KM (2010) Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40(4):571–581

    Article  CAS  PubMed  Google Scholar 

  8. García-Martínez J, Aranda A, Pérez-Ortín JE (2004) Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol Cell 15(2):303–313

    Article  PubMed  Google Scholar 

  9. García-Martínez J, Pelechano V, Pérez-Ortín JE (2011) Genomic-wide methods to evaluate transcription rates in yeast. Methods Mol Biol 734:25–44

    Article  PubMed  Google Scholar 

  10. Jordán-Pla A, Pérez-Martínez ME, Pérez-Ortín JE (2019) Measuring RNA polymerase activity genome-wide with high-resolution run-on-based methods. Methods 159–160:177–182

    Article  PubMed  Google Scholar 

  11. Marzluff WF (1978) Transcription of RNA in isolated nuclei. Methods Cell Biol 19:317–332

    Article  PubMed  Google Scholar 

  12. Gariglio P, Buss J, Green MH (1974) Sarkosyl activation of RNA polymerase activity in mitotic mouse cells. FEBS Lett 44:330–333

    Article  CAS  PubMed  Google Scholar 

  13. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahat DB, Kwak H, Booth GT, Jonkers IH, Danko CG, Patel RK, Waters CT, Munson K, Core LJ, Lis JT (2016) Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat Protoc 11(8):1455–1476

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jordán-Pla A, Gupta I, de Miguel-Jiménez L, Steinmetz LM, Chávez S, Pelechano V, Pérez-Ortín JE (2015) Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Res 43(2):787–802

    Article  PubMed  Google Scholar 

  16. Jordán-Pla A, Miguel A, Serna E, Pelechano V, Pérez-Ortín JE (2016) Biotin-genomic run-on (bio-GRO): a high-resolution method for the analysis of nascent transcription in yeast. Methods Mol Biol 1361:125–139

    Article  PubMed  Google Scholar 

  17. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Begley V, Jordán-Pla A, Peñate X, Garrido-Godino AI, Challal D, Cuevas-Bermúdez A, Mitjavila A, Barucco M, Gutiérrez G, Singh A, Alepuz P, Navarro F, Libri D, Pérez-Ortín JE, Chávez S (2021) Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biol 18:1310–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ana Miguel Blanco, Manoli Barneo, and María Encarna Pérez for their help with setting up the protocol, and to José García Martínez for reviewing the manuscript. The work in the Valencia laboratory is supported by grants from the Spanish MINECO and the European Union funds (FEDER) (BFU2016-77728-C3-3-P to J.E. P-O).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Jordán-Pla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jordán-Pla, A., Pérez-Ortín, J.E. (2022). High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 2477. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2257-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2257-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2256-8

  • Online ISBN: 978-1-0716-2257-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics