Skip to main content

Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae

  • Protocol
  • First Online:
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2477))

Abstract

Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to get a comprehensive picture of cellular behavior and to understand biological systems. In the past two decades, affinity purification coupled to mass spectrometry has become a powerful tool to comprehensively study interaction networks and their assemblies. To overcome initial limitations of the approach, in particular, the effect of protein and RNA degradation, loss of transient interactors, and poor overall yield of intact complexes from cell lysates, various modifications to affinity purification protocols have been devised over the years. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol as described here has been optimized for the yeast S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gavin A, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  2. Goh K-I, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690. https://doi.org/10.1073/pnas.0701361104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204. https://doi.org/10.1038/nbt.1522

    Article  CAS  PubMed  Google Scholar 

  4. Ho Y, Gruhler A, Heilbut A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  CAS  PubMed  Google Scholar 

  5. Gavin A, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  6. Krogan N, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  7. Costanzo MC, Hogan JD, Cusick ME et al (2000) The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28:73–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin D, Yin X, Wang X et al (2013) Re-annotation of protein-coding genes in the genome of Saccharomyces cerevisiae based on support vector machines. PLoS One 8(7):e64477. https://doi.org/10.1371/journal.pone.0064477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grigoriev A (2003) On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res 31:4157–4161. https://doi.org/10.1093/nar/gkg466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins SR, Kemmeren P, Zhao X-C et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450. https://doi.org/10.1074/mcp.M600381-MCP200

    Article  CAS  PubMed  Google Scholar 

  11. Johnson ME, Hummer G (2011) Nonspecific binding limits the number of proteins in a cell and shapes their interaction networks. Proc Natl Acad Sci U S A 108:603–608. https://doi.org/10.1073/pnas.1010954108

    Article  PubMed  Google Scholar 

  12. Picotti P, Bodenmiller B, Mueller LN et al (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806. https://doi.org/10.1016/j.cell.2009.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oeffinger M (2012) Two steps forward-one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics 12(10):1591–1608. https://doi.org/10.1002/pmic.201100509

    Article  CAS  PubMed  Google Scholar 

  14. Cristea I, Williams R, Chait B, Rout M (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4:1933–1941

    Article  CAS  PubMed  Google Scholar 

  15. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  16. Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4:951–956. https://doi.org/10.1038/nmeth1101

    Article  CAS  PubMed  Google Scholar 

  17. Karlsson R, Jendeberg L, Nilsson B et al (1995) Direct and competitive kinetic analysis of the interaction between human IgG1 and a one domain analogue of protein a. J Immunol Methods 183:43–49

    Article  CAS  PubMed  Google Scholar 

  18. López-Ferrer D, Ramos-Fernández A, Martínez-Bartolomé S et al (2006) Quantitative proteomics using 16O/18O labeling and linear ion trap mass spectrometry. Proteomics 6(1):S4–S11. https://doi.org/10.1002/pmic.200500375

    Article  PubMed  Google Scholar 

  19. Capelo JL, Carreira R, Diniz M et al (2009) Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta 650:151–159. https://doi.org/10.1016/j.aca.2009.07.034

    Article  CAS  PubMed  Google Scholar 

  20. Belozerov VE, Lin Z-Y, Gingras A-C et al (2012) High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol 32:3695–3706. https://doi.org/10.1128/MCB.00232-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods 14(5):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu F, Teo GC, Kong AT et al (2020) Identification of modified peptides using localization-aware open search. Nat Commun 11(1):1–9

    Article  CAS  Google Scholar 

  23. Polasky DA, Yu F, Teo GC et al (2020) Fast and comprehensive N-and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods 17:1125–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res 10(9):3871–3879. https://doi.org/10.1021/pr101196n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjornson RD, Carriero NJ, Colangelo C et al (2008) X!!Tandem, an improved method for running X!Tandem in parallel on collections of commodity computers. J Proteome Res 7(1):293–299. https://doi.org/10.1021/pr0701198

    Article  CAS  PubMed  Google Scholar 

  26. Eng JK, Hoopmann MR, Jahan TA et al (2015) A deeper look into comet—implementation and features. J Am Soc Mass Spectrom 26(11):1865–1874. https://doi.org/10.1007/s13361-015-1179-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eng JK, Jahan TA, Hoopmann MR (2012) Comet: an open source tandem mass spectrometry sequence database search tool. Proteomics 13(1):22–24. https://doi.org/10.1002/pmic.201200439

    Article  CAS  PubMed  Google Scholar 

  28. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  29. Cox J, Michalski A, Mann M (2011) Software lock mass by two-dimensional minimization of peptide mass errors. J Am Soc Mass Spectrom 22:1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaab C, Geiger T, Stoehr G et al (2012) Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteomics 11:M111.014068

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tyanova S, Temu T, Carlson A et al (2015) Visualization of LC-MS/MS proteomics data in MaxQuan. Proteomics 15:1453–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  PubMed  Google Scholar 

  34. Liu G, Zhang JP, Larsen B et al (2010) ProHits: an integrated software platform for mass spectrometry-based interaction proteomics. Nat Biotechnol 28:1015–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10(6):1150–1159. https://doi.org/10.1002/pmic.200900375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Käll L, Canterbury J, Weston J et al (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925

    Article  PubMed  Google Scholar 

  37. Käll L, Storey JD, MacCoss MJ, Noble WS (2008) Assigning confidence measures to peptides identified by tandem mass spectrometry. J Proteome Res 7(1):29–34

    Article  PubMed  Google Scholar 

  38. Käll L, Storey JD, Noble WS (2008) Nonparametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics 24(16):i42–i48

    Article  PubMed  PubMed Central  Google Scholar 

  39. The M, Noble WS, MacCoss MJ, Käll L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27:1719–1727

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222. https://doi.org/10.1007/978-1-4939-0685-7_14

    Article  CAS  PubMed  Google Scholar 

  41. Mellacheruvu D, Wright Z, Couzens AL et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10:730–736. https://doi.org/10.1038/nmeth.2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  43. Bondos SE, Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316:223–231

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663. https://doi.org/10.1016/j.cbpa.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  45. Damodaran S, Kinsella JE (1983) Dissociation of nucleoprotein complexes by chaotropic salts. FEBS Lett 158:53–57

    Article  CAS  PubMed  Google Scholar 

  46. Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  47. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239

    Article  CAS  PubMed  Google Scholar 

  48. O’Connor CD, Hames BD (2008) Proteomics. Scion Publishing Limited

    Google Scholar 

Download references

Acknowledgments

C.T is supported by funding awarded to M.O. from the Canadian Institutes for Health Research (PJT153313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Oeffinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trahan, C., Oeffinger, M. (2022). Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 2477. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2257-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2257-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2256-8

  • Online ISBN: 978-1-0716-2257-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics