Skip to main content

Methods for Assessing Circadian Rhythms and Cell Cycle in Intestinal Enteroids

  • 517 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2482)

Abstract

Endogenous circadian clocks play a key role in regulating a vast array of biological processes from cell cycle to metabolism, and disruption of circadian rhythms exacerbates a range of human ailments including cardiovascular, metabolic, and gastrointestinal diseases. Determining the state of a patient’s circadian rhythms and clock-controlled signaling pathways has important implications for precision and personalized medicine, from improving the diagnosis of circadian-related disorders to optimizing the timing of drug delivery. Patient-derived 3-dimensional enteroids or in vitro “mini gut” is an attractive model uncovering human- and patient-specific circadian target genes that may be critical for personalized medicine. Here, we introduce several procedures to assess circadian rhythms and cell cycle dynamics in enteroids through time course sample collection methods and assay techniques including immunofluorescence, live cell confocal microscopy, and bioluminescence. These methods can be applied to evaluate the state of circadian rhythms and circadian clock-gated cell division cycles using mouse and human intestinal enteroids.

Key words

  • Circadian rhythm
  • Cell cycle
  • Intestinal enteroids
  • Time course sampling
  • Immunofluorescence
  • Bioluminescence assay

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2249-0_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2249-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705. https://doi.org/10.1016/j.cell.2004.11.015

    CAS  CrossRef  PubMed  Google Scholar 

  2. Leise TL, Wang CW, Gitis PJ, Welsh DK (2012) Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS One 7(3):e33334. https://doi.org/10.1371/journal.pone.0033334

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96(2):271–290. https://doi.org/10.1016/s0092-8674(00)80566-8

    CAS  CrossRef  PubMed  Google Scholar 

  4. Cox KH, Takahashi JS (2019) Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 63(4):R93–r102. https://doi.org/10.1530/jme-19-0153

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Hurley JM, Loros JJ, Dunlap JC (2016) Circadian oscillators: around the transcription-translation feedback loop and on to output. Trends Biochem Sci 41(10):834–846. https://doi.org/10.1016/j.tibs.2016.07.009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Parasram K, Karpowicz P (2020) Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 77(7):1267–1288. https://doi.org/10.1007/s00018-019-03323-x

    CAS  CrossRef  PubMed  Google Scholar 

  7. Dierickx P, Van Laake LW, Geijsen N (2018) Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO Rep 19(1):18–28. https://doi.org/10.15252/embr.201745130

    CAS  CrossRef  PubMed  Google Scholar 

  8. Welz PS, Zinna VM, Symeonidi A, Koronowski KB, Kinouchi K, Smith JG, Guillén IM, Castellanos A, Furrow S, Aragón F, Crainiciuc G, Prats N, Caballero JM, Hidalgo A, Sassone-Corsi P, Benitah SA (2019) BMAL1-driven tissue clocks respond independently to light to maintain homeostasis. Cell 177(6):1436–1447.e1412. https://doi.org/10.1016/j.cell.2019.05.009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ, Lee YY, Anafi RC, Hogenesch JB (2018) A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 10(458). https://doi.org/10.1126/scitranslmed.aat8806

  10. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

    CAS  CrossRef  PubMed  Google Scholar 

  11. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418. https://doi.org/10.1038/nature09637

    CAS  CrossRef  PubMed  Google Scholar 

  12. Matsu-Ura T, Moore SR, Hong CI (2018) WNT takes two to tango: molecular links between the circadian clock and the cell cycle in adult stem cells. J Biol Rhythm 33(1):5–14. https://doi.org/10.1177/0748730417745913

    CAS  CrossRef  Google Scholar 

  13. Matsu-Ura T, Dovzhenok A, Aihara E, Rood J, Le H, Ren Y, Rosselot AE, Zhang T, Lee C, Obrietan K, Montrose MH, Lim S, Moore SR, Hong CI (2016) Intercellular coupling of the cell cycle and circadian clock in adult stem cell culture. Mol Cell 64(5):900–912. https://doi.org/10.1016/j.molcel.2016.10.015

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Moore SR, Pruszka J, Vallance J, Aihara E, Matsuura T, Montrose MH, Shroyer NF, Hong CI (2014) Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine. Dis Model Mech 7(9):1123–1130. https://doi.org/10.1242/dmm.014399

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Rosselot AE, Park M, Matsu-Ura T, Wu G, Flores DE, Subramanian KR, Lee S, Sundaram N, Broda TR, McCauley HA et al (2022) Ontogeny and function of the circadian clock in intestinal organoids. EMBO J 41(2):e106973

    CAS  CrossRef  Google Scholar 

  16. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346. https://doi.org/10.1073/pnas.0308709101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Abe T, Sakaue-Sawano A, Kiyonari H, Shioi G, Inoue K, Horiuchi T, Nakao K, Miyawaki A, Aizawa S, Fujimori T (2013) Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development 140(1):237–246. https://doi.org/10.1242/dev.084111

    CAS  CrossRef  PubMed  Google Scholar 

  18. Bertaux-Skeirik N, Wunderlich M, Teal E, Chakrabarti J, Biesiada J, Mahe M, Sundaram N, Gabre J, Hawkins J, Jian G, Engevik AC, Yang L, Wang J, Goldenring JR, Qualls JE, Medvedovic M, Helmrath MA, Diwan T, Mulloy JC, Zavros Y (2017) CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. J Pathol 242(4):463–475. https://doi.org/10.1002/path.4918

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc 8(12):2471–2482. https://doi.org/10.1038/nprot.2013.153

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH, Helmrath MA, Sato T, Shroyer NF (2013) Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol 3(4):217–240. https://doi.org/10.1002/9780470942390.mo130179

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Tsai YH, Czerwinski M, Wu A, Dame MK, Attili D, Hill E, Colacino JA, Nowacki LM, Shroyer NF, Higgins PDR, Kao JY, Spence JR (2018) A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture. Cell Mol Gastroenterol Hepatol 6(2):218–222.e217. https://doi.org/10.1016/j.jcmgh.2018.04.008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Mahe MM, Sundaram N, Watson CL, Shroyer NF, Helmrath MA (2015) Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J Vis Exp 97. https://doi.org/10.3791/52483

  23. Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythm 32(5):380–393. https://doi.org/10.1177/0748730417728663

    CAS  CrossRef  Google Scholar 

  24. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer JM, Albrecht U, Schibler U (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338. https://doi.org/10.1371/journal.pbio.0030338

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Lidth V, de Jeude JF, Vermeulen JL, Montenegro-Miranda PS, Van den Brink GR, Heijmans J (2015) A protocol for lentiviral transduction and downstream analysis of intestinal organoids. J Vis Exp 98. https://doi.org/10.3791/52531

  26. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. https://doi.org/10.1016/j.cell.2007.12.033

    CAS  CrossRef  PubMed  Google Scholar 

  27. Izumo M, Sato TR, Straume M, Johnson CH (2006) Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol 2(10):e136. https://doi.org/10.1371/journal.pcbi.0020136

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 DK117005 (CIH), U19 AI116491 (CIH), R21 CA227379 (CIH), and National Research Foundation of Korea 2020R1A6A3A03038405 (MP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian I. Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Park, M., Cao, Y., Hong, C.I. (2022). Methods for Assessing Circadian Rhythms and Cell Cycle in Intestinal Enteroids. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols