Skip to main content

In Vivo Imaging of Circadian NET Formation During Lung Injury by Four-Dimensional Intravital Microscopy

  • Protocol
  • First Online:
Circadian Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2482))

Abstract

Neutrophil extracellular traps (NETs) are toxic extracellular structures deployed by neutrophils in response to pathogens and sterile danger signals. NETs are circadian in nature as mouse and human neutrophils preferentially deploy them at night or early morning. Traditionally, NETs have been quantified using a plethora of methods including immunofluorescence and ELISA-based assays; however few options are available to visualize them in vivo. Here we describe a method to directly visualize and quantify NET formation and release in the microvasculature of the lung using intravital imaging in a model of acute lung injury. The method allows four-dimensional capture and quantification of NET formation dynamics over time and should be a useful resource for those interested in visualizing neutrophil responses in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  2. Branzk N, Lubojemska A, Hardison SE, Wang Q, Maximiliano G, Brown GD, Papayannopoulos V (2015) Neutrophils sense microbial size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025

    Article  CAS  Google Scholar 

  3. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans and hyphal forms. Cell Microbiol 8:668–676

    Article  CAS  PubMed  Google Scholar 

  5. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M et al (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:109–116

    Article  CAS  PubMed  Google Scholar 

  6. Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG et al (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. elife 2014:1–27

    Google Scholar 

  7. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7:e32366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silvestre-Roig C, Braster Q, Wichapong K, Lee EY, Teulon JM et al (2019) Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abrams ST, Zhang N, Manson J, Liu T, Dart C et al (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aroca-Crevillén A, Adrover JM, Hidalgo A (2020) Circadian features of neutrophil biology. Front Immunol 11:1–9

    Article  CAS  Google Scholar 

  11. Nicolás-Ávila JÁ, Adrover JM, Hidalgo A (2017) Neutrophils in homeostasis, immunity, and cancer. Immunity 46:15–28

    Article  PubMed  CAS  Google Scholar 

  12. Knight JS, Zhao W, Luo W, Subramanian V, Dell AAO et al (2013) Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 123:2981–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813–9818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188:3522–3531

    Article  CAS  PubMed  Google Scholar 

  15. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21:815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:324–333

    Article  CAS  PubMed  Google Scholar 

  17. Gómez-Moreno D, Adrover JM, Hidalgo A (2018) Neutrophils as effectors of vascular inflammation. Eur J Clin Investig 48:1–14

    Article  CAS  Google Scholar 

  18. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Massberg S, Grahl L, Von Bruehl ML, Manukyan D, Pfeiler S et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–896

    Article  CAS  PubMed  Google Scholar 

  20. Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ et al (2017) Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358:1202–1206

    Article  PubMed  CAS  Google Scholar 

  21. Döring Y, Soehnlein O, Weber C (2014) Neutrophils cast NETs in atherosclerosis. Circ Res 114:931–934

    Article  PubMed  CAS  Google Scholar 

  22. Knight JS, Luo W, O’Dell AA, Yalavarthi S, Zhao W et al (2014) Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 114:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA et al (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33:2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A et al (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361(6409):eaao4227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8(361):361ra138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y et al (2020) Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol 21:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB et al (2012) Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 119:6335–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122:2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J et al (2020) Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 217:1–7

    Article  CAS  Google Scholar 

  30. Mikacenic C, Moore R, Dmyterko V, West TE, Altemeier WA, Liles WC, Lood C (2018) Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit Care 22:1–8

    Article  Google Scholar 

  31. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31:318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R et al (2013) Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153:1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adrover JM, Nicolás-Ávila JA, Hidalgo A (2016) Aging: a temporal dimension for neutrophils. Trends Immunol 37:334–345

    Article  CAS  PubMed  Google Scholar 

  34. Adrover JM, del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M et al (2019) A neutrophil timer coordinates immune defense and vascular protection. Immunity 50:390–402.e10

    Article  CAS  PubMed  Google Scholar 

  35. Martinez-Bakker M, Helm B (2015) The influence of biological rhythms on host-parasite interactions. Trends Ecol Evol 30:314–326

    Article  PubMed  Google Scholar 

  36. Fung YL, Silliman CC (2009) The role of neutrophils in the pathogenesis of transfusion-related acute lung injury. Transfus Med Rev 23:266–283

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boe E, Usfbunfou B, Njdf Q, Uxp JOB, Npefm F et al (2009) Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest 119(11):3450–3461

    Google Scholar 

  38. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J et al (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346:1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Looney MR, Su X, Van Ziffle JA, Lowell CA, Matthay MA (2006) Neutrophils and their Fcγ receptors are essential in a mouse model of transfusion-related acute lung injury. J Clin Invest 116:1615–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF (2011) Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8:91–96

    Article  CAS  PubMed  Google Scholar 

  41. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207:1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Adrover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aroca-Crevillén, A., Hidalgo, A., Adrover, J.M. (2022). In Vivo Imaging of Circadian NET Formation During Lung Injury by Four-Dimensional Intravital Microscopy. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics