Skip to main content

Probing the Interaction Between Chromatin and Chromatin-Associated Complexes with Optical Tweezers

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

Single-molecule force spectroscopy is a powerful tool to analyze the architecture and interaction of large macromolecular assemblies that are refractory to high-resolution structural interrogations. Here, we describe an optical tweezers–based platform for extracting the mechanical fingerprints of individual nucleosome arrays bound with chromatin-associated complexes, such as the Polycomb repressive complex 2 (PRC2). This platform comprehensively characterizes the diverse binding modes of PRC2 on chromatin, measures their mechanical strengths, and is broadly applicable to the studies of other epigenetic machineries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868

    Article  ADS  Google Scholar 

  2. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389:251–260

    Article  ADS  Google Scholar 

  3. Fierz B, Poirier MG (2019) Biophysics of chromatin dynamics. Annu Rev Biophys 48:321–345

    Article  Google Scholar 

  4. Zhou K, Gaullier G, Luger K (2019) Nucleosome structure and dynamics are coming of age. Nat Struct Mol Biol 26:3–13

    Article  Google Scholar 

  5. Ordu O, Lusser A, Dekker NH (2016) Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 8:33–49

    Article  Google Scholar 

  6. Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci U S A 97:127

    Article  ADS  Google Scholar 

  7. Bennink ML et al (2001) Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat Struct Biol 8:606–610

    Article  Google Scholar 

  8. Poirier MG, Marko JF (2002) Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci U S A 99:15393

    Article  ADS  Google Scholar 

  9. Brower-Toland BD et al (2002) Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Natl Acad Sci U S A 99:1960

    Article  ADS  Google Scholar 

  10. Pope LH et al (2005) Single chromatin fiber stretching reveals physically distinct populations of disassembly events. Biophys J 88:3572–3583

    Article  Google Scholar 

  11. Mihardja S, Spakowitz AJ, Zhang Y, Bustamante C (2006) Effect of force on mononucleosomal dynamics. Proc Natl Acad Sci 103:15871

    Article  ADS  Google Scholar 

  12. Hall MA et al (2009) High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16:124–129

    Article  Google Scholar 

  13. Kruithof M et al (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534–540

    Article  Google Scholar 

  14. Vlijm R, Kim SH, De Zwart PL, Dalal Y, Dekker C (2017) The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. Nanoscale 9:1862–1870

    Article  Google Scholar 

  15. Zaret KS, Lerner J, Iwafuchi-Doi M (2016) Chromatin scanning by dynamic binding of Pioneer factors. Mol Cell 62:665–667

    Article  Google Scholar 

  16. Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18:407–422

    Article  Google Scholar 

  17. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  Google Scholar 

  18. Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG (2017) In: Spies M, Chemla YR (eds) Methods in Enzymology, vol 582. Academic Press, Cambridge, Massachusetts, pp 85–119

    Google Scholar 

  19. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  ADS  Google Scholar 

  20. Leicher R et al (2020) Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. Proc Natl Acad Sci U S A 117:30465

    Article  Google Scholar 

  21. Ngo TTM, Zhang Q, Zhou R, Yodh JG, Ha T (2015) Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–1144

    Article  Google Scholar 

  22. Wasserman MR, Schauer GD, O’Donnell ME, Liu S (2019) Replication fork activation is enabled by a single-stranded DNA gate in CMG helicase. Cell 178:600–611.e616

    Google Scholar 

  23. Ge EJ, Jani KS, Diehl KL, Müller MM, Muir TW (2019) Nucleation and propagation of heterochromatin by the histone methyltransferase PRC2: geometric constraints and impact of the regulatory subunit JARID2. J Am Chem Soc 141:15029–15039

    Article  Google Scholar 

  24. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning11Edited by T. Richmond. J Mol Biol 276:19–42

    Google Scholar 

  25. Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Methods 1:19–26

    Article  Google Scholar 

  26. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346

    Article  Google Scholar 

  27. Wasserman MR, Liu S (2019) A tour de force on the double helix: exploiting DNA mechanics to study DNA-based molecular machines. Biochemistry 58:4667–4676

    Article  Google Scholar 

  28. Müller MM, Muir TW (2015) Histones: at the crossroads of peptide and protein chemistry. Chem Rev 115:2296–2349

    Article  Google Scholar 

  29. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Matthew Reynolds for developing the Force-Extension Analyzer and the clustering analysis algorithm. This work is supported by the Robertson Foundation, the Pershing Square Sohn Cancer Research Alliance, and the National Institutes of Health (DP2HG010510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leicher, R., Liu, S. (2022). Probing the Interaction Between Chromatin and Chromatin-Associated Complexes with Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics