Skip to main content

Transcranial Magnetic Stimulation Mapping for Perceptual and Cognitive Functions

  • Protocol
  • First Online:
Lesion-to-Symptom Mapping

Part of the book series: Neuromethods ((NM,volume 180))

  • 622 Accesses

Abstract

Transcranial magnetic stimulation (TMS) is a powerful neuroscience technique that provides a mechanism to study causal brain-behavior relationships in both healthy and damaged/diseased brains with a high-degree of both spatial and temporal precision. In this chapter, we take you through the mechanisms of TMS and discuss practical aspects of using TMS for mapping perceptual and cognitive functions in both basic science and clinical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–80. https://doi.org/10.1038/35036239

    Article  CAS  PubMed  Google Scholar 

  2. Matsuyoshi D, Hirose N, Mima T et al (2007) Repetitive transcranial magnetic stimulation of human MT+ reduces apparent motion perception. Neurosci Lett 429:131–135. https://doi.org/10.1016/j.neulet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  3. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488. https://doi.org/10.1212/01.wnl.0000250268.13789.b2

    Article  PubMed  Google Scholar 

  4. Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206. https://doi.org/10.1016/j.neuron.2004.12.033

    Article  CAS  PubMed  Google Scholar 

  5. Ruzzoli M, Marzi CA, Miniussi C (2010) The neural mechanisms of the effects of transcranial magnetic stimulation on perception. J Neurophysiol 103:2982–2989. https://doi.org/10.1152/jn.01096.2009

    Article  PubMed  Google Scholar 

  6. Harris JA, Clifford CWG, Miniussi C (2008) The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? J Cogn Neurosci 20:734–740. https://doi.org/10.1162/jocn.2008.20048

    Article  PubMed  Google Scholar 

  7. Allen EA, Pasley BN, Duong T, Freeman RD (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317:1918–1921. https://doi.org/10.1126/science.1146426

    Article  CAS  PubMed  Google Scholar 

  8. Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115:1697–1708. https://doi.org/10.1016/j.clinph.2004.02.019

    Article  PubMed  Google Scholar 

  9. Zangen A, Roth Y, Voller B, Hallett M (2005) Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol 116:775–779. https://doi.org/10.1016/j.clinph.2004.11.008

    Article  PubMed  Google Scholar 

  10. Roth Y, Amir A, Levkovitz Y, Zangen A (2007) Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol 24:31–38. https://doi.org/10.1097/WNP.0b013e31802fa393

    Article  PubMed  Google Scholar 

  11. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 325(8437):1106–1107

    Article  Google Scholar 

  12. Pitcher D, Charles L, Devlin JT et al (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19:319–324. https://doi.org/10.1016/j.cub.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  13. Silson EH, McKeefry DJ, Rodgers J et al (2013) Specialized and independent processing of orientation and shape in visual field maps LO1 and LO2. Nat Neurosci 16:267–269. https://doi.org/10.1038/nn.3327

    Article  CAS  PubMed  Google Scholar 

  14. McKeefry DJ, Burton MP, Vakrou C et al (2008) Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. J Neurosci 28:6848–6857. https://doi.org/10.1523/JNEUROSCI.1287-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKeefry DJ, Gouws A, Burton MP, Morland AB (2009) The noninvasive dissection of the human visual cortex: using fMRI and TMS to study the organization of the visual brain. Neuroscientist 15:489–506. https://doi.org/10.1177/1073858409334424

    Article  PubMed  Google Scholar 

  16. Strong SL, Silson EH, Gouws AD et al (2017) A direct demonstration of functional differences between subdivisions of human V5/MT+. Cereb Cortex 27:1–10. https://doi.org/10.1093/cercor/bhw362

    Article  PubMed  Google Scholar 

  17. Strong SL, Silson EH, Gouws AD et al (2019) An enhanced role for right hV5/MT+ in the analysis of motion in the contra- and ipsi-lateral visual hemi-fields. Behav Brain Res 372:112060. https://doi.org/10.1016/j.bbr.2019.112060

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paus T, Jech R, Thompson CJ et al (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184. https://doi.org/10.1523/JNEUROSCI.17-09-03178.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8(16):3537–3540

    Article  CAS  Google Scholar 

  20. Wang JX, Rogers LM, Gross EZ et al (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345:1054–1057. https://doi.org/10.1126/science.1252900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stokes MG, Chambers CD, Gould IC et al (2005) Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94:4520–4527. https://doi.org/10.1152/jn.00067.2005

    Article  PubMed  Google Scholar 

  22. Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39:415–419. https://doi.org/10.1016/S0028-3932(00)00130-5

    Article  CAS  PubMed  Google Scholar 

  23. Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26:13128–13142. https://doi.org/10.1523/JNEUROSCI.1657-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nat Neurosci 4:953–957. https://doi.org/10.1038/nn0901-953

    Article  CAS  PubMed  Google Scholar 

  25. Cohen D, Goddard E, Mullen KT (2019) Reevaluating hMT+ and hV4 functional specialization for motion and static contrast using fMRI-guided repetitive transcranial magnetic stimulation. J Vis 19:11. https://doi.org/10.1167/19.3.11

    Article  PubMed  Google Scholar 

  26. Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37:1156–1161. https://doi.org/10.1523/JNEUROSCI.0114-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sack AT, Cohen Kadosh R, Schuhmann T et al (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21:207–221. https://doi.org/10.1162/jocn.2009.21126

    Article  PubMed  Google Scholar 

  28. Amassian VE, Cracco RQ, Maccabee PJ et al (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol Potentials Sect 74:458–462. https://doi.org/10.1016/0168-5597(89)90036-1

    Article  CAS  Google Scholar 

  29. Devlin JT, Watkins KE (2007) Stimulating language: insights from TMS. Brain 130:610–622. https://doi.org/10.1093/brain/awl331

    Article  PubMed  Google Scholar 

  30. Devlin JT, Matthews PM, Rushworth MFS (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15:71–84. https://doi.org/10.1162/089892903321107837

    Article  PubMed  Google Scholar 

  31. Köhler S, Paus T, Buckner RL, Milner B (2004) Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI—rTMS study. J Cogn Neurosci 16:178–188. https://doi.org/10.1162/089892904322984490

    Article  PubMed  Google Scholar 

  32. Nixon P, Lazarova J, Hodinott-Hill I et al (2004) The inferior frontal gyrus and phonological processing: an investigation using rTMS. J Cogn Neurosci 16:289–300. https://doi.org/10.1162/089892904322984571

    Article  PubMed  Google Scholar 

  33. Gough PM (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25:8010–8016. https://doi.org/10.1523/JNEUROSCI.2307-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ille S, Sollmann N, Hauck T et al (2015) Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg 123:212–225. https://doi.org/10.3171/2014.9.JNS14929

    Article  PubMed  Google Scholar 

  35. Ille S, Sollmann N, Butenschoen VM et al (2016) Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir 158:2265–2275. https://doi.org/10.1007/s00701-016-2968-0

    Article  PubMed  Google Scholar 

  36. Lefaucheur J-P, Picht T (2016) The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin Neurophysiol 46:125–133. https://doi.org/10.1016/j.neucli.2016.05.001

    Article  Google Scholar 

  37. Tarapore PE, Picht T, Bulubas L et al (2016) Safety and tolerability of navigated TMS for preoperative mapping in neurosurgical patients. Clin Neurophysiol 127:1895–1900. https://doi.org/10.1016/j.clinph.2015.11.042

    Article  PubMed  Google Scholar 

  38. Raffa G, Scibilia A, Conti A et al (2019) The role of navigated transcranial magnetic stimulation for surgery of motor-eloquent brain tumors: a systematic review and meta-analysis. Clin Neurol Neurosurg 180:7–17. https://doi.org/10.1016/j.clineuro.2019.03.003

    Article  PubMed  Google Scholar 

  39. Conway N, Wildschuetz N, Moser T et al (2017) Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J Neurosurg 127:981–991. https://doi.org/10.3171/2016.9.JNS161595

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Silson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strong, S., Silson, E.H. (2022). Transcranial Magnetic Stimulation Mapping for Perceptual and Cognitive Functions. In: Pustina, D., Mirman, D. (eds) Lesion-to-Symptom Mapping. Neuromethods, vol 180. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2225-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2225-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2224-7

  • Online ISBN: 978-1-0716-2225-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics