Skip to main content

Fluorescence Recovery After Photobleaching (FRAP) to Study Dynamics of the Structural Maintenance of Chromosome (SMC) Complex in Live Escherichia coli Bacteria

Part of the Methods in Molecular Biology book series (MIMB,volume 2476)

Abstract

MukBEF, a structural maintenance of chromosome (SMC) complex, is an important molecular machine for chromosome organization and segregation in Escherichia coli. Fluorescently tagged MukBEF forms distinct spots (or “foci”) composed of molecular assemblies in the cell, where it is thought to carry out most of its chromosome-associated activities. Here, we outline the technique of fluorescence recovery after photobleaching (FRAP) as a method to study the properties of YFP-tagged MukB in fluorescent foci. This method can provide important insight into the dynamics of MukB on DNA and be used to study its biochemical properties in vivo.

Key words

  • Chromosome organization
  • MukBEF
  • E. coli
  • Fluorescence microscopy
  • FRAP

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2221-6_4
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2221-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Le TB, Laub MT (2014) New approaches to understanding the spatial organization of bacterial genomes. Curr Opin Microbiol 22C:15–21

    CrossRef  Google Scholar 

  2. Wang X, Llopis PM, Rudner DZ (2013) Organization and segregation of bacterial chromosomes. Nat Rev Genet 14:191–203

    CrossRef  CAS  Google Scholar 

  3. Danilova O, Reyes-Lamothe R, Pinskaya M et al (2007) MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol Microbiol 65:1485–1492

    CrossRef  CAS  Google Scholar 

  4. Nolivos S, Sherratt D (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 38:380–392

    CrossRef  CAS  Google Scholar 

  5. Badrinarayanan A, Lesterlin C, Reyes-Lamothe R et al (2012) The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 194:4669–4676

    CrossRef  CAS  Google Scholar 

  6. Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science (New York, NY) 338:528–531

    CrossRef  CAS  Google Scholar 

  7. Nicolas E, Upton AL, Uphoff S et al (2014) The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. MBio 5:e01001–e01013

    CrossRef  Google Scholar 

  8. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CrossRef  CAS  Google Scholar 

  9. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    CrossRef  CAS  Google Scholar 

  10. Wollman AJM, Miller H, Zhou Z et al (2015) Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer. Biochem Soc Trans 43:139–145

    CrossRef  CAS  Google Scholar 

  11. Plank M, Wadhams GH, Leake MC (2009) Millisecond timescale slim-field imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol 1:602–612

    CrossRef  CAS  Google Scholar 

  12. Robson A, Burrage K, Leake MC (2013) Inferring diffusion in single live cells at the single-molecule level. Philos Trans Roy Soc Lond B Biol Sci 368:20120029

    CrossRef  Google Scholar 

  13. Llorente-Garcia I, Lenn T, Erhardt H et al (2014) Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811–824

    CrossRef  CAS  Google Scholar 

  14. Lenn T, Leake MC (2012) Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision. Open Biol 2:120090

    CrossRef  Google Scholar 

  15. Chiu S-W, Leake MC (2011) Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 12:2518–2542

    CrossRef  CAS  Google Scholar 

  16. Leake MC (2010) Shining the spotlight on functional molecular complexes: the new science of single-molecule cell biology. Commun Integr Biol 3:415–418

    CrossRef  Google Scholar 

  17. Bryan SJ, Burroughs NJ, Shevela D et al (2014) Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol 94(5):1179–1195

    CrossRef  CAS  Google Scholar 

  18. Chiu S-W, Roberts MAJ, Leake MC et al (2013) Positioning of chemosensory proteins and FtsZ through the Rhodobacter sphaeroides cell cycle. Mol Microbiol 90:322–337

    CAS  PubMed  Google Scholar 

  19. Lenn T, Leake MC, Mullineaux CW (2008) Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? Biochem Soc Trans 36:1032–1036

    CrossRef  CAS  Google Scholar 

  20. Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15:84–91

    CrossRef  CAS  Google Scholar 

  21. Reyes-Lamothe R (2012) Use of fluorescently tagged SSB proteins in in vivo localization experiments. Methods Mol Biol 922:245–253

    CAS  PubMed  Google Scholar 

  22. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    CrossRef  CAS  Google Scholar 

  23. Beattie T, Hapadia N, Nicolas E, Uphoff S, Wollman AJM, Leake MC, Reyes-Lamothe R (2017) Frequent exchange of the DNA polymerase during bacterial chromosome replication. elife 6:e21763

    CrossRef  Google Scholar 

  24. Pu Y, Li Y, Jin X, Tian T, Ma Q, Zhao Z, Lin S-L, Chen Z, Li B, Yao G, Leake MC, Lo C-L, Bai F (2019) ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol Cell 7:143–156

    CrossRef  Google Scholar 

  25. Jin X, Lee J-E, Schaefer C, Luo X, Wollman AJM, Tian T, Zhang X, Chen X, Li Y, McLeish TCB, Leake MC, Bai F (2021) Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness. Sci Adv. https://doi.org/10.1101/2021.06.24.449778

  26. Leake MC (2021) Correlative approaches in single-molecule biophysics: a review of the progress in methods and applications. Methods. https://doi.org/10.1101/2021.06.24.449778

  27. Wollman AJM, Hedlund EG, Shashkova S (2020) Leake MC towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells. Methods 170:82–89

    CrossRef  CAS  Google Scholar 

  28. Shepherd JW, Payne-Dwyer AL, Lee J-E, Syeda A, Leake MC (2021) Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. J Phys Photonics 3:034010

    CrossRef  CAS  Google Scholar 

  29. Shepherd JS, Lecinski S, Wragg J, Shashkova S, MacDonald C, Leake MC (2020) Molecular crowding in single eukaryotic cells: using cell environment biosensing and single-molecule optical microscopy to probe dependence on extracellular ionic strength, local glucose conditions, and sensor copy number. Methods:S1046-2023(20)30236-X. https://doi.org/10.1016/j.ymeth.2020.10.015

Download references

Acknowledgments

M.L. acknowledges support from the Engineering and Physical Science Research Council (EPSRC EP/T002166/1, EP/N031431/1), the Biotechnology and Biological Sciences Research Council (BB/P000746/1, BB/R001235/1), and the Royal Society (IEC\NSFC\191406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Badrinarayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Badrinarayanan, A., Leake, M.C. (2022). Fluorescence Recovery After Photobleaching (FRAP) to Study Dynamics of the Structural Maintenance of Chromosome (SMC) Complex in Live Escherichia coli Bacteria. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols