Skip to main content

Modulation of VEGFA Signaling During Heart Regeneration in Zebrafish

  • Protocol
  • First Online:
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2475))

Abstract

Over the last decades, myocardial infarction and heart failure have accounted every year for millions of deaths worldwide. After a coronary occlusion, the lack of blood supply to downstream muscle leads to cell death and scarring. To date, several pro-angiogenic factors have been tested to stimulate reperfusion of the affected myocardium, VEGFA being one of the most extensively studied. Given the unsuccessful outcomes of clinical trials, understanding how cardiac revascularization takes place in models with endogenous regenerative capacity holds the key to devising more efficient therapies. Here, we summarize the main findings on VEGFA’s role during cardiac repair and regeneration, with a particular focus on zebrafish as a regenerative model. Moreover, we provide a comprehensive overview of available tools to modulate Vegfa expression and action in zebrafish regeneration studies. Understanding the role of Vegfa during zebrafish heart regeneration may help devise efficient therapies and circumvent current limitations in using VEGFA for therapeutic angiogenesis approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  2. van den Borne SW et al (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37

    Article  PubMed  Google Scholar 

  3. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beltrami AP et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  CAS  PubMed  Google Scholar 

  5. Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mollova M et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci 110(4):1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polizzotti BD et al (2015) Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med 7(281):281ra45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sahara M, Santoro F, Chien KR (2015) Programming and reprogramming a human heart cell. EMBO J 34(6):710–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uygur A, Lee RT (2016) Mechanisms of cardiac regeneration. Dev Cell 36(4):362–374

    Article  CAS  PubMed  Google Scholar 

  10. Das S et al (2019) A unique collateral artery development program promotes neonatal heart regeneration. Cell 176(5):1128–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Habib GB et al (1991) Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation 83(3):739–746

    Article  CAS  PubMed  Google Scholar 

  12. Marin-Juez R et al (2016) Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc Natl Acad Sci U S A 113(40):11237–11242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabia PJ et al (1992) An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 327(26):1825–1831

    Article  CAS  PubMed  Google Scholar 

  14. Taimeh Z et al (2013) Vascular endothelial growth factor in heart failure. Nat Rev Cardiol 10(9):519–530

    Article  CAS  PubMed  Google Scholar 

  15. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  PubMed  Google Scholar 

  16. Molin D, Post MJ (2007) Therapeutic angiogenesis in the heart: protect and serve. Curr Opin Pharmacol 7(2):158–163

    Article  CAS  PubMed  Google Scholar 

  17. Robich MP et al (2011) Myocardial therapeutic angiogenesis: a review of the state of development and future obstacles. Expert Rev Cardiovasc Ther 9(11):1469–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patterson C, Runge MS (2000) Therapeutic myocardial angiogenesis via vascular endothelial growth factor gene therapy: moving on down the road. Circulation 102(9):940–942

    Article  CAS  PubMed  Google Scholar 

  19. Svensson EC et al (1999) Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99(2):201–205

    Article  CAS  PubMed  Google Scholar 

  20. Karra R et al (2018) Vegfaa instructs cardiac muscle hyperplasia in adult zebrafish. Proc Natl Acad Sci U S A 115(35):8805–8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marin-Juez R et al (2019) Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev Cell 51(4):503–515 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    Article  CAS  PubMed  Google Scholar 

  23. Wang J et al (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chablais F et al (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Rosa JM et al (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674

    Article  CAS  PubMed  Google Scholar 

  26. Schnabel K et al (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6(4):e18503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bevan L et al (2020) Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res 116(7):1357–1371

    Article  CAS  PubMed  Google Scholar 

  28. Lai SL et al (2017) Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife 6:e25605

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simoes FC et al (2020) Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 11(1):600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kikuchi K et al (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20(3):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koth J et al (2020) Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development 147(8):dev186569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Munch J et al (2017) Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144(8):1425–1440

    CAS  PubMed  Google Scholar 

  33. Zhao L et al (2019) Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep 26(3):546–554 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao L et al (2014) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A 111(4):1403–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lepilina A et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619

    Article  CAS  PubMed  Google Scholar 

  36. Kim J et al (2010) PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci U S A 107(40):17206–17210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harrison MRM et al (2015) Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell 33(4):442–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gancz D et al (2019) Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. Elife 8:e44153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrison MR et al (2019) Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. Elife 8:e42762

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vivien CJ et al (2019) Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. NPJ Regen Med 4:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cao J, Poss KD (2018) The epicardium as a hub for heart regeneration. Nat Rev Cardiol 15(10):631–647

    Article  PubMed  PubMed Central  Google Scholar 

  42. González-Rosa JM, Peralta M, Mercader N (2012) Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370(2):173–186

    Article  PubMed  CAS  Google Scholar 

  43. Cao Y, Cao J (2018) Covering and re-covering the heart: development and regeneration of the epicardium. J Cardiovasc Dev Dis 6(1):3

    Article  PubMed Central  CAS  Google Scholar 

  44. Lafontant PJ et al (2013) Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy. PLoS One 8(8):e72388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanchez-Iranzo H et al (2018) Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc Natl Acad Sci U S A 115(16):4188–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jopling C et al (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–U168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kikuchi K et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–U162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gonzalez-Rosa JM, Burns CE, Burns CG (2017) Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxf) 4(3):105–123

    Article  Google Scholar 

  49. Tzahor E, Poss KD (2017) Cardiac regeneration strategies: staying young at heart. Science 356(6342):1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahmoud AI et al (2015) Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell 34(4):387–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Helfant RH, Vokonas PS, Gorlin R (1971) Functional importance of the human coronary collateral circulation. N Engl J Med 284(23):1277–1281

    Article  CAS  PubMed  Google Scholar 

  52. Kim EK et al (2016) A protective role of early collateral blood flow in patients with ST-segment elevation myocardial infarction. Am Heart J 171(1):56–63

    Article  PubMed  Google Scholar 

  53. Seiler C et al (2013) The human coronary collateral circulation: development and clinical importance. Eur Heart J 34(34):2674–2682

    Article  CAS  PubMed  Google Scholar 

  54. Gupta R, Tongers J, Losordo DW (2009) Human studies of angiogenic gene therapy. Circ Res 105(8):724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tian X, Pu WT, Zhou B (2015) Cellular origin and developmental program of coronary angiogenesis. Circ Res 116(3):515–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pinto AR et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409

    Article  CAS  PubMed  Google Scholar 

  57. Patra C et al (2017) The zebrafish ventricle: a hub of cardiac endothelial cells for in vitro cell behavior studies. Sci Rep 7(1):2687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tian X et al (2014) De novo formation of a distinct coronary vascular population in neonatal heart. Science 345(6192):90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu B et al (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dube KN et al (2017) Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight 2(22):e96800

    Article  PubMed Central  Google Scholar 

  61. Miquerol L et al (2015) Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction. Circ Res 116(11):1765–1771

    Article  CAS  PubMed  Google Scholar 

  62. He L, Lui KO, Zhou B (2020) The formation of coronary vessels in cardiac development and disease. Cold Spring Harb Perspect Biol 12(5):a037168

    Article  CAS  PubMed  Google Scholar 

  63. van Royen N et al (2009) A critical review of clinical arteriogenesis research. J Am Coll Cardiol 55(1):17–25

    Article  PubMed  Google Scholar 

  64. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  65. Aurora AB et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124(3):1382–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Álvarez-Aznar A, Muhl L, Gaengel K (2017) VEGF receptor tyrosine kinases: key regulators of vascular function. In: Current topics in developmental biology. Elsevier, Amsterdam, pp 433–482

    Google Scholar 

  68. Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72(2):369–417

    Article  CAS  PubMed  Google Scholar 

  69. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  CAS  PubMed  Google Scholar 

  70. Carmeliet P et al (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and VEGF 188. Nat Med 5(5):495–502

    Article  CAS  PubMed  Google Scholar 

  71. Dor Y et al (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21(8):1939–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zangi L et al (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31(10):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bayliss PE et al (2006) Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2(5):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lowe V et al (2019) Neuropilin 1 mediates epicardial activation and revascularization in the regenerating zebrafish heart. Development 146(13):dev174482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rossi A et al (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524(7564):230–233

    Article  CAS  PubMed  Google Scholar 

  76. Rossi A et al (2016) Regulation of Vegf signaling by natural and synthetic ligands. Blood 128(19):2359–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuoka RL et al (2016) Radial glia regulate vascular patterning around the developing spinal cord. Elife 5:e20253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bahary N et al (2007) Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood 110(10):3627–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koenig AL et al (2016) Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev Biol 411(1):115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matsuoka RL et al (2017) CNS-resident progenitors direct the vascularization of neighboring tissues. Proc Natl Acad Sci U S A 114(38):10137–10142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. May D et al (2008) Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci U S A 105(1):282–287

    Article  CAS  PubMed  Google Scholar 

  82. Muller YA et al (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci U S A 94(14):7192–7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Walton EM et al (2018) Cyclopropane modification of trehalose dimycolate drives granuloma angiogenesis and mycobacterial growth through Vegf signaling. Cell Host Microbe 24(4):514–525 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ali Z et al (2019) Intussusceptive vascular remodeling precedes pathological neovascularization. Arterioscler Thromb Vasc Biol 39(7):1402–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hesselson D et al (2009) Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling. Proc Natl Acad Sci U S A 106(35):14896–14901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90(22):10705–10709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fong GH et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70

    Article  CAS  PubMed  Google Scholar 

  88. Ball SG et al (2010) Neuropilin-1 regulates platelet-derived growth factor receptor signalling in mesenchymal stem cells. Biochem J 427(1):29–40

    Article  CAS  PubMed  Google Scholar 

  89. Prud’homme GJ et al (2016) Neuropilin-1 is a receptor for extracellular miRNA and AGO2/miRNA complexes and mediates the internalization of miRNAs that modulate cell function. Oncotarget 7(42):68057–68071

    Article  PubMed  PubMed Central  Google Scholar 

  90. West DC et al (2005) Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 280(14):13457–13464

    Article  CAS  PubMed  Google Scholar 

  91. Pellet-Many C et al (2011) Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J 435(3):609–618

    Article  CAS  PubMed  Google Scholar 

  92. Gu C et al (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kitsukawa T et al (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19(5):995–1005

    Article  CAS  PubMed  Google Scholar 

  94. Kawasaki T et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126(21):4895–4902

    Article  CAS  PubMed  Google Scholar 

  95. Lee P et al (2002) Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci U S A 99(16):10470–10475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Laguens R et al (2002) Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Ther 9(24):1676–1681

    Article  CAS  PubMed  Google Scholar 

  97. Rafii S, Butler JM, Ding BS (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Michelle Collins, Stephanie Larrivée-Vanier, Hadil El-Sammak, and Armaan Mehra for comments on the manuscript and discussions. The research in Lai group is supported by the Ministry of Science and Technology (MOST 108-2320-B-001-032-MY2) and the IBMS/Academia Sinica (IBMS-CRC108-P03) in Taiwan. Kaushik Chowdhury is the recipient of the AS-TIGP Research Progress Fellowship. The Marín-Juez lab is currently supported by the Canadian Institutes of Health Research (PJT-178037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Marín-Juez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chowdhury, K., Lai, SL., Marín-Juez, R. (2022). Modulation of VEGFA Signaling During Heart Regeneration in Zebrafish. In: Fiedler, L.R., Pellet-Many, C. (eds) VEGF Signaling. Methods in Molecular Biology, vol 2475. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2217-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2217-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2216-2

  • Online ISBN: 978-1-0716-2217-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics