Skip to main content

Genomic Prediction of Complex Traits, Principles, Overview of Factors Affecting the Reliability of Genomic Prediction, and Algebra of the Reliability

  • Protocol
  • First Online:
Genomic Prediction of Complex Traits

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2467))

Abstract

The quality of the predictions of genetic values based on the genotyping of neutral markers (GEBVs) is a key information to decide whether or not to implement genomic selection. This quality depends on the part of the genetic variability captured by the markers and on the precision of the estimate of their effects. Selection index theory provided the framework for evaluating the accuracy of GEBVs once the information had been gathered, with the genomic relationship matrix (GRM) playing a central role. When this accuracy must be known a priori, the theory of quantitative genetics gives clues to calculate the expectation of this GRM. This chapter makes a critical inventory of the methods developed to calculate these accuracies a posteriori and a priori. The most significant factors affecting this accuracy are described (size of the reference population, number of markers, linkage disequilibrium, heritability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194(3):597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124(3):743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guillaume F, Fritz S, Boichard D et al (2008) Estimation by simulation of the efficiency of the French marker-assisted selection program in dairy cattle. Genet Sel Evol 40:91. https://doi.org/10.1186/1297-9686-40-1-91

    Article  PubMed  PubMed Central  Google Scholar 

  5. Henderson R (1973) Sire evaluation and genetic trends. In: Proceedings of the animal breeding and genetics symposium in honor of Dr J L lush, Blacksburg, Virginia august 1972. American Society of Animal Science, Champaign, Illinois, pp 10–41

    Google Scholar 

  6. Koivula M, Stranden I, Su G, Mäntysaari EA (2012) Different methods to calculate genomic predictions - comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP). J Dairy Sci 95:4065–4073

    Article  CAS  PubMed  Google Scholar 

  7. Nejati-Javaremi A, Smith C, Gibson J (1997) Effect of total allelic relationship on accuracy of evaluation and response to selection. J Anim Sci 75:1738–1745

    Article  CAS  PubMed  Google Scholar 

  8. Goddard ME, Hayes BJ, Meuwissen THE (2011) Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 128:409–421

    Article  CAS  PubMed  Google Scholar 

  9. Householder AS (1953) Principles of numerical analysis. McGraw-Hill, New York

    Google Scholar 

  10. Gianola D, de los Campos G, Hill WG et al (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183(1):347–363. https://doi.org/10.1534/genetics.109.103952

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  13. Zou F, Lee S, Knowles MR, Wright FA (2010) Quantification of population structure using correlated SNPs by shrinkage principal components. Hum Hered 70:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dekkers JC (2007) Prediction of response to marker assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341s

    Article  CAS  PubMed  Google Scholar 

  16. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391

    Article  CAS  PubMed  Google Scholar 

  17. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  CAS  PubMed  Google Scholar 

  18. Shumbusho F, Raoul J, Astruc JM et al (2013) Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. J Anim Sci 91:3644–3657

    Article  CAS  PubMed  Google Scholar 

  19. de Roos APW, Schrooten C, Veerkamp RF, van Arendonk JAM (2011) Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J Dairy Sci 94:1559–1567

    Article  PubMed  Google Scholar 

  20. Raoul J, Swan AA, Elsen JM (2017) Using a very low-density SNP panel for genomic selection in a breeding program for sheep. Genet Sel Evol 49(1):76. https://doi.org/10.1186/s12711-017-0351-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Daetwyler HD, Calus MPL, Pong-Wong R et al (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hayes BJ, Bowman PJ, Chamberlain AJ et al (2009c) Invited review: genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  23. Wientjes YC, Bijma P, Vandenplas J, Calus MP (2017) Multi-population genomic relationships for estimating current genetic variances within and genetic correlations between populations. Genetics 207:503–515

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wientjes YC, Veerkamp RF, Calus MP (2013) The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 193(2):621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wientjes YC, Veerkamp RF, Calus MP (2015) Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations. BMC Genet 16:87

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wientjes YC, Bijma P, Veerkamp RF, Calus MP (2016) An equation to predict the accuracy of genomic values by combining data from multiple traits, populations, or environments. Genetics 202:799–823

    Article  CAS  PubMed  Google Scholar 

  27. Raymond B, Wientjes YCJ, Bouwman AC et al (2020) A deterministic equation to predict the accuracy of multi-population genomic prediction with multiple genomic relationship matrices. Genet Sel Evol 52:21. https://doi.org/10.1186/s12711-020-00540-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48

    Google Scholar 

  29. Gianola D, Schön C (2016) Cross-validation without doing cross-validation in genome-enabled prediction. G3 (Bethesda) 6(10):3107–3128. https://doi.org/10.1534/g3.116.033381

    Article  Google Scholar 

  30. Calus MPL (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157–164

    Article  CAS  PubMed  Google Scholar 

  31. Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Legarra A, Robert-Granie C, Manfredi E, Elsen JM (2008) Performance of genomic selection in mice. Genetics 180(1):611–618

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ (2012) The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 44:4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clark S, Hickey J, van der Werf J (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayes BJ, Visscher P, Goddard ME (2009b) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 9:47–60

    Article  Google Scholar 

  36. Hayes BJ, Bowman PJ, Chamberlain AC et al (2009a) Accuracy of genomic breeding values in multi-breed populations. Genet Sel Evol 41:51

    Article  PubMed  PubMed Central  Google Scholar 

  37. Erbe M, Hayes BJ, Matukumalli LK et al (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 95:4114–4129

    Article  CAS  PubMed  Google Scholar 

  38. Goddard ME (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  39. Lee SH, Clark S, van der Werf JHJ (2017) Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS One 12(12):e0189775

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pszczola M, Strabel T, Mulder HA, Calus MP (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95(1):389–400

    Article  CAS  PubMed  Google Scholar 

  41. Legarra A, Misztal I (2008) Technical note: computing strategies in genome-wide selection. J Dairy Sci 91(1):360–366. https://doi.org/10.3168/jds.2007-0403

    Article  CAS  PubMed  Google Scholar 

  42. Daetwyler HD, Kemper KE, van der Werf JHJ, Hayes B (2012) Components of the accuracy of genomic prediction in a multi-breed sheep population. J Anim Sci 90:3375–3384

    Article  CAS  PubMed  Google Scholar 

  43. Karoui S, Carabano MJ, Diaz C, Legarra A (2012) A joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet Sel Evol 44:39

    Article  PubMed  PubMed Central  Google Scholar 

  44. Raymond B, Bouwman AC, Wientjes YCJ et al (2018) Genomic prediction for numerically small breeds, using models with pre-selected and differentially weighted markers. Genet Sel Evol 50:49. https://doi.org/10.1186/s12711-018-0419-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Toosi A, Fernando RL, Dekkers JCM (2010) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32–46

    Article  CAS  PubMed  Google Scholar 

  46. Kizilkaya K, Fernando RL, Garrick DJ (2010) Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 88:544–555

    Article  CAS  PubMed  Google Scholar 

  47. Erbe M, Gredler B, Seefried FR et al (2013) A function accounting for training set size and marker density to model the average accuracy of genomic prediction. PLoS One 8(12):e81046. https://doi.org/10.1371/journal.pone.0081046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill WG, Weir BS (2011) Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res (Camb) 3(1):47–64. https://doi.org/10.1017/S0016672310000480

    Article  Google Scholar 

  49. Daetwyler HD, Villanueva B, Woolliams JA, Weedon MN (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395. https://doi.org/10.1371/journal.pone.0003395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elsen JM (2017) An analytical framework to derive the expected precision of genomic selection. Genet Sel Evol 49(1):95. https://doi.org/10.1186/s12711-017-0366-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee SH, Weerasinghe WMSP, Wray N et al (2017) Using information of relatives in genomic prediction to apply effective stratified medicine. Sci Rep 7:42091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141

    Article  CAS  PubMed  Google Scholar 

  53. Hill WG (1975) Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popul Biol 8:117–126

    Article  CAS  PubMed  Google Scholar 

  54. Tenesa A, Navarro P, Hayes BJ et al (2007) Recent human effective population size estimated from linkage disequilibrium. Genome Res 17:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Misztal I (2016) Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size. Genetics 202(2):401–409. https://doi.org/10.1534/genetics.115.182089

    Article  CAS  PubMed  Google Scholar 

  56. Misztal I, Legarra A, Aguilar I (2014) Using recursion to compute the inverse of the genomic relationship matrix. J Dairy Sci 7(6):3943–3952. https://doi.org/10.3168/jds.2013-7752

    Article  CAS  Google Scholar 

  57. Visscher PM, Medland SE, Ferreira MAR et al (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2(3):e41

    Article  PubMed  PubMed Central  Google Scholar 

  58. Elsen JM (2016) Approximated prediction of genomic selection accuracy when reference and candidate populations are related. Genet Sel Evol 48:18. https://doi.org/10.1186/s12711-016-0183-3

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gillois M (1964) Relation d’identité en génétique. Ann Inst Henri Poincaré B2 1–94:36

    Google Scholar 

  60. Jacquard A (1966) Logique du calcul des coefficients d’identité entre deux individus. Population 21:751–776

    Article  Google Scholar 

  61. Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci 1:221–237

    Article  PubMed  Google Scholar 

  62. Brard S, Ricard A (2015) Is the use of formulae a reliable way to predict the accuracy of genomic selection? J Anim Breed Genet 132(3):207–217

    Article  CAS  PubMed  Google Scholar 

  63. Stam P (1980) The distribution of the fraction of the genome identical by descent in finite populations. Genet Res 35:131–155

    Article  Google Scholar 

  64. Stranden I, Garrick DJ (2009) Derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal meri.T. J Dairy Sci 92:2971–2975

    Article  CAS  PubMed  Google Scholar 

  65. Laloe D (1993) Precision and information in linear models of genetic evaluations. Genet Sel Evol 25:557–576

    Article  PubMed Central  Google Scholar 

  66. Gorjanc G, Bilma P, Hickey JM (2015) Reliability of pedigree based and genomic evaluations in selected populations. Genet Sel Evol 47(1):65. https://doi.org/10.1186/s12711-015-0145-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malécot G (1948) Les Mathématiques de l’Hérédité. Masson, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Elsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elsen, JM. (2022). Genomic Prediction of Complex Traits, Principles, Overview of Factors Affecting the Reliability of Genomic Prediction, and Algebra of the Reliability. In: Ahmadi, N., Bartholomé, J. (eds) Genomic Prediction of Complex Traits. Methods in Molecular Biology, vol 2467. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2205-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2205-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2204-9

  • Online ISBN: 978-1-0716-2205-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics