Skip to main content

Lineage Tracing Methods to Study Mammary Epithelial Hierarchies In Vivo

  • Protocol
  • First Online:
Mammary Stem Cells

Abstract

Lineage tracing is now considered the gold standard approach to study cellular hierarchies and cell fate in vivo (McKenna and Gagnon, Development 146:dev169730, 2019; Kretzschmar and Watt, Cell 148:33–45, 2012). This type of clonal analysis consists of genetically labeling defined cells and following their destiny and progeny in vivo and in situ.

Here we will describe different existing in vivo systems to clonally trace targeted cells and will discuss their respective advantages and inconveniences; we will then provide stepwise instructions for setting up and evaluate lineage tracing experiments, listing the most common downstream analyses and read-out assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148(1–2):33–45. https://doi.org/10.1016/j.cell.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  PubMed  Google Scholar 

  3. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. https://doi.org/10.1038/nature10573

    Article  CAS  PubMed  Google Scholar 

  4. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 286(4):L643–L649. https://doi.org/10.1152/ajplung.00155.2003

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Riccio P, Schotsaert M, Mori M, Lu J, Lee DK, Garcia-Sastre A, Xu J, Cardoso WV (2018) Spatial-temporal lineage restrictions of embryonic p63(+) progenitors establish distinct stem cell pools in adult airways. Dev Cell 44(6):752–761 e754. https://doi.org/10.1016/j.devcel.2018.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tika E, Ousset M, Dannau A, Blanpain C (2019) Spatiotemporal regulation of multipotency during prostate development. Development 146(20):dev180224. https://doi.org/10.1242/dev.180224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, Renaud O, Leroy O, Rulands S, Simons BD, Fre S (2018) Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat Cell Biol 20(6):677–687. https://doi.org/10.1038/s41556-018-0108-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodilla V, Dasti A, Huyghe M, Lafkas D, Laurent C, Reyal F, Fre S (2015) Luminal progenitors restrict their lineage potential during mammary gland development. PLoS Biol 13(2):e1002069. https://doi.org/10.1371/journal.pbio.1002069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S (2013) Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol 203(1):47–56. https://doi.org/10.1083/jcb.201307046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD, Blanpain C (2012) Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14(11):1131–1138. https://doi.org/10.1038/ncb2600

    Article  CAS  PubMed  Google Scholar 

  11. Wuidart A, Ousset M, Rulands S, Simons BD, Van Keymeulen A, Blanpain C (2016) Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev 30(11):1261–1277. https://doi.org/10.1101/gad.280057.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S, Schulte R, Kalajzic I, Rath N, Olson MF, Metzger D, Faraldo MM, Deugnier MA, Glukhova MA, Stingl J (2014) Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 16(10):942–950, 941–947. https://doi.org/10.1038/ncb3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Keymeulen A, Fioramonti M, Centonze A, Bouvencourt G, Achouri Y, Blanpain C (2017) Lineage-restricted mammary stem cells sustain the development, homeostasis, and regeneration of the estrogen receptor positive lineage. Cell Rep 20(7):1525–1532. https://doi.org/10.1016/j.celrep.2017.07.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang C, Christin JR, Oktay MH, Guo W (2017) Lineage-biased stem cells maintain estrogen-receptor-positive and -negative mouse mammary luminal lineages. Cell Rep 18(12):2825–2835. https://doi.org/10.1016/j.celrep.2017.02.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 7(2):232–240. https://doi.org/10.1210/mend.7.2.8469236

    Article  CAS  PubMed  Google Scholar 

  16. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92(15):6991–6995. https://doi.org/10.1073/pnas.92.15.6991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506(7488):322–327. https://doi.org/10.1038/nature12948

    Article  CAS  PubMed  Google Scholar 

  19. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van de Wetering M, Marra G, Clevers H (2007) The intestinal Wnt/TCF signature. Gastroenterology 132(2):628–632

    Article  PubMed  Google Scholar 

  20. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32(20):6086–6095. https://doi.org/10.1093/nar/gkh941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He L, Li Y, Li Y, Pu W, Huang X, Tian X, Wang Y, Zhang H, Liu Q, Zhang L, Zhao H, Tang J, Ji H, Cai D, Han Z, Han Z, Nie Y, Hu S, Wang QD, Sun R, Fei J, Wang F, Chen T, Yan Y, Huang H, Pu WT, Zhou B (2017) Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 23(12):1488–1498. https://doi.org/10.1038/nm.4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805. https://doi.org/10.1161/CIRCULATIONAHA.118.034250

    Article  CAS  PubMed  Google Scholar 

  23. Liu K, Yu W, Tang M, Tang J, Liu X, Liu Q, Li Y, He L, Zhang L, Evans SM, Tian X, Lui KO, Zhou B (2018) A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development 145(18):dev167775. https://doi.org/10.1242/dev.167775

    Article  CAS  PubMed  Google Scholar 

  24. Han X, Wang Y, Pu W, Huang X, Qiu L, Li Y, Yu W, Zhao H, Liu X, He L, Zhang L, Ji Y, Lu J, Lui KO, Zhou B (2019) Lineage tracing reveals the bipotency of SOX9(+) hepatocytes during liver regeneration. Stem Cell Rep 12(3):624–638. https://doi.org/10.1016/j.stemcr.2019.01.010

    Article  CAS  Google Scholar 

  25. Liu Q, Liu K, Cui G, Huang X, Yao S, Guo W, Qin Z, Li Y, Yang R, Pu W, Zhang L, He L, Zhao H, Yu W, Tang M, Tian X, Cai D, Nie Y, Hu S, Ren T, Qiao Z, Huang H, Zeng YA, Jing N, Peng G, Ji H, Zhou B (2019) Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat Genet 51(4):728–738. https://doi.org/10.1038/s41588-019-0346-6

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Lv Z, Zhang S, Wang Z, He L, Tang M, Pu W, Zhao H, Zhang Z, Shi Q, Cai D, Wu M, Hu G, Lui KO, Feng J, Nieto MA, Zhou B (2020) Genetic fate mapping of transient cell fate reveals N-cadherin activity and function in tumor metastasis. Dev Cell 54(5):593–607 e595. https://doi.org/10.1016/j.devcel.2020.06.021

    Article  CAS  PubMed  Google Scholar 

  27. van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400

    Article  PubMed  Google Scholar 

  28. de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, Hau CS, Clevers H, Barker N, Jonkers J (2012) Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 228(3):300–309. https://doi.org/10.1002/path.4096

    Article  CAS  PubMed  Google Scholar 

  29. Blaas L, Pucci F, Messal HA, Andersson AB, Josue Ruiz E, Gerling M, Douagi I, Spencer-Dene B, Musch A, Mitter R, Bhaw L, Stone R, Bornhorst D, Sesay AK, Jonkers J, Stamp G, Malanchi I, Toftgard R, Behrens A (2016) Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nat Cell Biol 18(12):1346–1356. https://doi.org/10.1038/ncb3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakrabarti R, Celia-Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, Hwang J, Peng J, Nixon B, Grady JJ, DeCoste C, Gao J, van Es JH, Li MO, Aifantis I, Clevers H, Kang Y (2018) Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science 360(6396):eaan4153. https://doi.org/10.1126/science.aan4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, Zeng YA (2015) Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517(7532):81–84. https://doi.org/10.1038/nature13851

    Article  CAS  PubMed  Google Scholar 

  32. Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O, Cardiff RD, Bentires-Alj M (2015) PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 525(7567):114–118. https://doi.org/10.1038/nature14669

    Article  CAS  PubMed  Google Scholar 

  33. Chang TH, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM (2014) New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 16(1):R1. https://doi.org/10.1186/bcr3593

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elias S, Morgan MA, Bikoff EK, Robertson EJ (2017) Long-lived unipotent Blimp1-positive luminal stem cells drive mammary gland organogenesis throughout adult life. Nat Commun 8(1):1714. https://doi.org/10.1038/s41467-017-01971-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sale S, Lafkas D, Artavanis-Tsakonas S (2013) Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 15(5):451–460. https://doi.org/10.1038/ncb2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis FM, Lloyd-Lewis B, Harris OB, Kozar S, Winton DJ, Muresan L, Watson CJ (2016) Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun 7:13053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lloyd-Lewis B, Harris OB, Watson CJ, Davis FM (2017) Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol 27(8):556–567. https://doi.org/10.1016/j.tcb.2017.04.001

    Article  PubMed  Google Scholar 

  38. Scheele CL, Hannezo E, Muraro MJ, Zomer A, Langedijk NS, van Oudenaarden A, Simons BD, van Rheenen J (2017) Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542(7641):313–317. https://doi.org/10.1038/nature21046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

    Article  CAS  PubMed  Google Scholar 

  40. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  41. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  CAS  PubMed  Google Scholar 

  42. Wuidart A, Sifrim A, Fioramonti M, Matsumura S, Brisebarre A, Brown D, Centonze A, Dannau A, Dubois C, Van Keymeulen A, Voet T, Blanpain C (2018) Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol 20(6):666–676. https://doi.org/10.1038/s41556-018-0095-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  44. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4. https://doi.org/10.1186/1471-213x-1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, Giraddi RR, Wuidart A, Bouvencourt G, Dubois C, Salmon I, Sotiriou C, Phillips WA, Blanpain C (2015) Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525(7567):119–123. https://doi.org/10.1038/nature14665

    Article  CAS  PubMed  Google Scholar 

  46. Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, Song Y, Wuidart A, Van Herck J, Dannau A, Bouvencourt G, Dubois C, Dedoncker N, Sahay A, de Maertelaer V, Siebel CW, Van Keymeulen A, Voet T, Blanpain C (2020) Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584(7822):608–613. https://doi.org/10.1038/s41586-020-2632-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKenna A, Gagnon JA (2019) Recording development with single cell dynamic lineage tracing. Development 146(12):dev169730. https://doi.org/10.1242/dev.169730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Institut Curie In Vivo Experimental Facility for help in the maintenance and care of mouse colonies. We also acknowledge the Cell and Tissue Imaging Platform (PICT-IBiSA) of the Genetics and Developmental Biology Department (UMR3215/U934) and the Nikon Imaging Centre of Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). SF is supported by Paris Sciences et Lettres (PSL* Research University) (grant # C19-64-2019-228), the French National Research Agency (ANR) grant number ANR-15-CE13-0013-01, the Canceropole Ile-de-France (grant # 2015-2-APD-01-2 ICR-1), the Ligue contre la cancer (grant #RS19/75-101), the Foundation for Medical Research (grant # EQU2019030078210), the Schlumberger Foundation FSER (grant # FSER20200211117) and by Labex DEEP ANR-Number 11-3 LBX-0044. VR is supported by Josep Carreras Leukaemia Research Institute (IJC) and funded by Ramón y Cajal Programme from Ministry of Science, Innovation and Universities (RYC2018-024099-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Fre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodilla, V., Fre, S. (2022). Lineage Tracing Methods to Study Mammary Epithelial Hierarchies In Vivo. In: Vivanco, M.d. (eds) Mammary Stem Cells. Methods in Molecular Biology, vol 2471. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2193-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2193-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2192-9

  • Online ISBN: 978-1-0716-2193-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics