Skip to main content

Assessing Antigen Presentation on the Surface of Plasmodium falciparum-Infected Erythrocytes by Photoactivated Localization Microscopy (PALM)

Part of the Methods in Molecular Biology book series (MIMB,volume 2470)

Abstract

Super-resolution microscopy in the form of photoactivated localization microscopy (PALM) offers the possibility of counting single molecules in a cell, a cellular compartment or a molecular complex. PALM can, therefore, underpin molecular and biochemical processes with a numeric and stoichiometric understanding of the interacting players. Here, we introduce the physical principles underlying PALM and provide a step-by-step protocol of how to apply PALM to questions related to the biology and pathophysiology of P. falciparum and other malaria parasites.

Key words

  • Single-molecule counting
  • Photoactivated localization microscopy
  • PALM
  • PfEMP1
  • STORM

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    CrossRef  CAS  Google Scholar 

  2. Sauer M, Heilemann M (2017) Single-molecule localization microscopy in eukaryotes. Chem Rev 117:7478–7509

    CrossRef  CAS  Google Scholar 

  3. Dietz MS, Heilemann M (2019) Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. Nanoscale 11:17981–17991

    CrossRef  CAS  Google Scholar 

  4. Fürstenberg A, Heilemann M (2013) Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15:14919–14930

    CrossRef  Google Scholar 

  5. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CrossRef  CAS  Google Scholar 

  6. Heilemann M, Van De Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176

    CrossRef  CAS  Google Scholar 

  7. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CrossRef  CAS  Google Scholar 

  8. Sanchez CP, Karathanasis C, Sanchez R, Cyrklaff M, Jager J, Buchholz B et al (2019) Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes. Commun Biol 2:172

    Google Scholar 

  9. Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci U S A 110:16015–16020

    CrossRef  CAS  Google Scholar 

  10. Fricke F, Beaudouin J, Eils R, Heilemann M (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep 5:14072

    CrossRef  Google Scholar 

  11. Karathanasis C, Medler J, Fricke F, Smith S, Malkusch S, Widera D et al (2020) Single-molecule imaging reveals the oligomeric state of functional TNFα-induced plasma membrane TNFR1 clusters in cells. Sci Signal 13:eaax5647

    CrossRef  CAS  Google Scholar 

  12. Mckinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    CrossRef  CAS  Google Scholar 

  13. Wolter S, Schüttpelz M, Tscherepanow M, Van De Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237:12–22

    CrossRef  CAS  Google Scholar 

  14. Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12:1198–1228

    CrossRef  CAS  Google Scholar 

  15. Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    CrossRef  Google Scholar 

  16. Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2:169–194

    CrossRef  Google Scholar 

  17. Malkusch S, Heilemann M (2016) Extracting quantitative information from single-molecule super-resolution imaging data with LAMA - LocAlization microscopy analyzer. Sci Rep 6:34486

    CrossRef  CAS  Google Scholar 

  18. Endesfelder U, Malkusch S, Fricke F, Heilemann M (2014) A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol 141:629–638

    CrossRef  CAS  Google Scholar 

  19. Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R et al (2019) Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 30:1369–1376

    CrossRef  CAS  Google Scholar 

  20. Durisic N, Laparra-Cuervo L, Sandoval-Alvarez A, Borbely JS, Lakadamyali M (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11:156–162

    CrossRef  CAS  Google Scholar 

  21. Molecular Probes (2003) Zenon human IgG labeling kits. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fmp25400.pdf&title=WmVub24gSHVtYW4gSWdHIExhYmVsaW5nIEtpdHM=

  22. Bangs Laboratories Inc (2016) Quantum™ Simply Cellular®. https://www.bangslabs.com/sites/default/files/imce/docs/PDS%20814%20Web.pdf

  23. Bangs Laboratories Inc (2019) Quickcal®. https://www.bangslabs.com/sites/default/files/imce/docs/PDS%20819%20Web.pdf

  24. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821

    Google Scholar 

  25. Waldecker M, Dasanna AK, Lansche C, Linke M, Srismith S, Cyrklaff M et al (2017) Differential time-dependent volumetric and surface area changes and delayed induction of new permeation pathways in P. falciparum-infected hemoglobinopathic erythrocytes. Cell Microbiol 19:e12650. https://doi.org/10.1111/cmi.12650

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 240245660—SFB 1129 (M.L.) and SFB 807 (C.K. and M.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lanzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karathanasis, C., Sanchez, C.P., Heilemann, M., Lanzer, M. (2022). Assessing Antigen Presentation on the Surface of Plasmodium falciparum-Infected Erythrocytes by Photoactivated Localization Microscopy (PALM). In: Jensen, A.T.R., Hviid, L. (eds) Malaria Immunology. Methods in Molecular Biology, vol 2470. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2189-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2189-9_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2188-2

  • Online ISBN: 978-1-0716-2189-9

  • eBook Packages: Springer Protocols