Skip to main content

CRISPR-Cas9 Editing of the Plasmodium falciparum Genome: Special Applications

  • Protocol
  • First Online:
Malaria Immunology

Abstract

The virulence of Plasmodium falciparum has been attributed in large part to the expression on the surface of infected red blood cells of the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Different forms of this protein are encoded by individual members of the multicopy gene family called var. Two attributes of the var gene family are key to the pathogenesis of malaria caused by P. falciparum; the hyperrecombinogenic nature of the var gene family that continuously generates antigenic diversity within parasite populations, and the ability of parasites to express only a single var gene at a time and to switch which gene is expressed over the course of an infection. The unique attributes of CRISPR-Cas9 have been applied to help decipher the molecular mechanisms underlying these unusual properties of the var gene family, both as a source of the DNA double strand breaks that initiate var gene recombination and as a way to recruit molecular probes to specific regions of the genome. In this chapter, we describe these somewhat unusual applications of the CRISPR-Cas9 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2018) World Malaria Report 2018. https://apps.who.int/iris/handle/10665/330011

  2. Miller LH, Baruch DI, Marsh K et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  CAS  Google Scholar 

  3. Salanti A, Dahlback M, Turner L et al (2004) Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med 200:1197–1203

    Article  CAS  Google Scholar 

  4. Turner L, Lavstsen T, Berger SS et al (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498:502–505

    Article  CAS  Google Scholar 

  5. Avril M, Tripathi AK, Brazier AJ et al (2012) A restricted subset of var genes mediates adherence of plasmodium falciparum infected erythrocytes to brain endothelial cells. Proc Natl Acad Sci U S A 109:e1782–e2790

    Article  CAS  Google Scholar 

  6. Claessens A, Adams Y, Ghumra A et al (2012) A subset of group A-like var genes encode the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 109:e1772–e1781

    Article  CAS  Google Scholar 

  7. Mccormick CJ, Craig A, Roberts D et al (1997) Intercellular adhesion molecule-1 and CD36 synergize to mediate adherence of plasmodium falciparum-infected erythrocytes to cultured human microvascular endothelial cells. J Clin Invest 100:2521–2529

    Article  CAS  Google Scholar 

  8. Fried M, Duffy PE (1996) Plasmodium falciparum-infected erythrocytes adhere to chondroitin sulfate a in the human placenta. Science 272:1502–1504

    Article  CAS  Google Scholar 

  9. Smith JD, Chitnis CE, Craig AG et al (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:101–110

    Article  CAS  Google Scholar 

  10. Baruch DI, Pasloske BL, Singh HB et al (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    Article  CAS  Google Scholar 

  11. Su X, Heatwole VM, Wertheimer SP et al (1995) A large and diverse gene family (var) encodes 200-350 kD proteins implicated in the antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    Article  CAS  Google Scholar 

  12. Otto TD, Gilabert A, Crellen T et al (2018) Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat Microbiol 3:687–697

    Article  CAS  Google Scholar 

  13. Kraemer SM, Kyes SA, Aggarwal G et al (2007) Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8:45

    Article  Google Scholar 

  14. Scherf A, Hernandez-Rivas R, Buffet P et al (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17:5418–5426

    Article  CAS  Google Scholar 

  15. Chookajorn T, Dzikowski R, Frank M et al (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci U S A 104:899–902

    Article  CAS  Google Scholar 

  16. Freitas-Junior LH, Hernandez-Rivas R, Ralph SA et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  CAS  Google Scholar 

  17. Lopez-Rubio JJ, Gontijo AM, Nunes MC et al (2007) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghorbal M, Gorman M, Macpherson CR et al (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821

    Article  CAS  Google Scholar 

  19. Wagner JC, Platt RJ, Goldfless SJ et al (2014) Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods 11:915–918

    Article  CAS  Google Scholar 

  20. Zhang X, Alexander N, Leonardi I et al (2019) Rapid antigen diversification through mitotic recombination in the human malaria parasite Plasmodium falciparum. PLoS Biol 17:e3000271

    Article  CAS  Google Scholar 

  21. Barcons-Simon A, Cordon-Obras C, Guizetti J et al (2020) CRISPR interference of a clonally variant GC-Rich noncoding RNA family leads to general repression of var genes in Plasmodium falciparum. MBio 11:e03054–e03019

    Article  CAS  Google Scholar 

  22. Bryant JM, Baumgarten S, Dingli F et al (2020) Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite. Mol Syst Biol 16:e9569

    Article  CAS  Google Scholar 

  23. Salanti A, Staalsoe T, Lavstsen T et al (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49:179–191

    Article  CAS  Google Scholar 

  24. Dzikowski R, Frank M, Deitsch K (2006) Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog 2:e22

    Article  Google Scholar 

  25. Deitsch KW, Driskill CL, Wellems TE (2001) Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res 29:850–853

    Article  CAS  Google Scholar 

  26. Fidock DA, Wellems TE (1997) Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc Natl Acad Sci USA 94:10931–10936

    Article  CAS  Google Scholar 

  27. Oduola AM, Weatherly NF, Bowdre JH et al (1988) Plasmodium falciparum: cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol 66:86–95

    Article  CAS  Google Scholar 

  28. Kirkman LA, Su XZ, Wellems TE (1996) Plasmodium falciparum: isolation of large numbers of parasite clones from infected blood samples. Exp Parasitol 83:147–149

    Article  CAS  Google Scholar 

  29. Vembar SS, Seetin M, Lambert C et al (2016) Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing. DNA Res 23:339–351

    Article  CAS  Google Scholar 

  30. Lapp SA, Geraldo JA, Chien JT et al (2017) PacBio assembly of a Plasmodium knowlesi genome sequence with hi-C correction and manual annotation of the SICAvar gene family. Parasitology 145:71–84

    Article  Google Scholar 

  31. Moon RW, Hall J, Rangkuti F et al (2013) Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci U S A 110:531–536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Dzikowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., Deitsch, K.W., Dzikowski, R. (2022). CRISPR-Cas9 Editing of the Plasmodium falciparum Genome: Special Applications. In: Jensen, A.T.R., Hviid, L. (eds) Malaria Immunology. Methods in Molecular Biology, vol 2470. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2189-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2189-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2188-2

  • Online ISBN: 978-1-0716-2189-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics