Skip to main content

Application of a Novel CL7/Im7 Affinity System in Purification of Complex and Pharmaceutical Proteins

  • Protocol
  • First Online:
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2466))

  • 1113 Accesses

Abstract

We have developed the CL7/Im7 protein purification system to achieve high-yield, high-purity and high-activity (HHH) products in one step. The system is based on the natural ultrahigh-affinity complex between the two small proteins encoded by colicinogenic plasmids carried by certain E. coli strains, the DNAse domain of colicin E7 (CE7; MW ~ 15 kDa) and its natural endogenous inhibitor, the immunity protein 7 (Im7; MW ~ 10 kDa). CL7 is an engineered variant of CE7, in which the toxic DNA-binding and catalytic activities have been eliminated while retaining the high affinity to Im7. CL7 is used as a protein tag, while Im7 is covalently attached to agarose beads. To make the CL7/Im7 technique easy to use, we have designed a set of the E. coli expression vectors for fusion of a target protein to the protease-cleavable CL7-tag either at the N- or the C-terminus, and also have the options of the dual (CL7/His8) tag. A subset of vectors is dedicated for cloning membrane and multisubunit proteins. The CL7/Im7 system has several notable advatantages over other available affinity purification techniques. First, high concentrations of the small Im7 protein are coupled to the beads resulting in the high column capacities (up to 60 mg/mL). Second, an exceptional stability of Im7 allows for multiple (100+) regeneration cycles with no loss of binding capacities. Third, the CL7-tag improves protein expression levels, solubility and, in some cases, assists folding of the target proteins. Fourth, the on-column proteolytic elution produces purified proteins with few or no extra amino acid residues. Finally, the CL7/Im7 affinity is largely insensitive to high salt concentrations. For many target proteins, loading the bacterial lysates on the Im7 column in high salt is a key to high purity. Altogether, these properties of the CL7/Im7 system allow for a one-step HHH purification of most challenging, biologically and clinically significant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khairil Anuar INA, Banerjee A, Keeble AH, Carella A, Nikov GI, Howarth M (2019) Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat Commun 10(1):1734. https://doi.org/10.1038/s41467-019-09678-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. STRATEGENE (2017) Affinity® Protein Expression and Purification System and Affinity® Protein Expression Vectors. https://www.chem-agilent.com/pdf/strata/204300.pdf. Accessed 28 Dec 2021

  3. Gerace E, Moazed D (2015) Affinity pull-down of proteins using anti-FLAG M2 agarose beads. Methods Enzymol 559:99–110. https://doi.org/10.1016/bs.mie.2014.11.010

  4. PROMEGA (2016) HaloTag® Protein Purification System Technical Manual. https://www.promega.com/resources/protocols/technical-manuals/0/halotag-protein-purification-system-protocol/. Accessed 28 Dec 2021

  5. Schmidt TG, Skerra A (2007) The strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535. https://doi.org/10.1038/nprot.2007.209

    Article  CAS  PubMed  Google Scholar 

  6. Vassylyeva MN, Klyuyev S, Vassylyev AD, Wesson H, Zhang Z, Renfrow MB, Wang H, Higgins NP, Chow LT, Vassylyev DG (2017) Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins. Proc Natl Acad Sci U S A 114(26):E5138–e5147. https://doi.org/10.1073/pnas.1704872114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS (1999) The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 7(1):91–102

    Article  CAS  Google Scholar 

  8. Wallis R, Moore GR, James R, Kleanthous C (1995) Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry 34(42):13743–13750

    Article  CAS  Google Scholar 

  9. Wallis R, Leung KY, Pommer AJ, Videler H, Moore GR, James R, Kleanthous C (1995) Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry 34(42):13751–13759

    Article  CAS  Google Scholar 

  10. Fei W, Ben R, Jing N, Lixin M, Yaping W (2020) A fusion of Taq DNA polymerase with the CL7 protein from Escherichia coli remarkably improves DNA amplification. https://www.researchgate.net/publication/346327072_A_fusion_of_Taq_DNA_polymerase_with_the_CL7_protein_from_Escherichia_coli_remarkably_improves_DNA_amplification/fulltext/5fbed3dfa6fdcc6cc669413d/A-fusion-of-Taq-DNA-polymerase-with-the-CL7-protein-from-Escherichia-coli-remarkably-improves-DNA-amplification.pdf. Accessed 28 Dec 2021

  11. Dong C, Qiao J, Wang X, Sun W, Chen L, Li S, Wu K, Ma L, Liu Y (2020) Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. Biotechnol Biofuels 13:108. https://doi.org/10.1186/s13068-020-01749-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. TriAltus Bioscience (2020) CL7-tagged plasmids. https://trialtusbioscience.com/collections/plasmids. Accessed 28 Dec 2021

  13. TriAltus Bioscience (2020) Plasmid Guide. https://trialtusbioscience.com/pages/plasmid-guide. Accessed 28 Dec 2021

  14. Qiao J, Li W, Lin S, Sun W, Ma L, Liu Y (2019) Co-expression of Cas9 and single-guided RNAs in Escherichia coli streamlines production of Cas9 ribonucleoproteins. Commun Biol 2:161. https://doi.org/10.1038/s42003-019-0402-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qiao J, Dong C, Wang X, Liu Y, Ma L (2019) One-step production of bioactive human lipopolysaccharide binding protein from LPS-eliminated E. coli. Protein Expr Purif 157:17–20. https://doi.org/10.1016/j.pep.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Qiao J, Lin S, Liu Y, Ma L (2019) A highly efficient Indirect P. pastoris surface display method based on the CL7/Im7 ultra-high-affinity system. Molecules 24(8):1483. https://doi.org/10.3390/molecules24081483

    Article  PubMed Central  Google Scholar 

  17. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5(1–2):75–86. https://doi.org/10.1023/B:JSFG.0000029237.70316.52

    Article  CAS  Google Scholar 

  18. TriAltus Bioscience (2020) SUMO Protease. https://trialtusbioscience.com/collections/proteases/products/sumo-protease. Accessed 28 Dec 2021

  19. TriAltus Bioscience (2020) PreScission Protease. https://trialtusbioscience.com/collections/proteases/products/prescission-protease. Accessed 28 Dec 2021

  20. Birch GM, Black T, Malcolm SK, Lai MT, Zimmerman RE, Jaskunas SR (1995) Purification of recombinant human rhinovirus 14 3C protease expressed in Escherichia coli. Protein Expr Purif 6(5):609–618. https://doi.org/10.1006/prep.1995.1080

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Li H, Guan W, Ling H, Mu T, Shuler FD, Fang X (2010) Human SUMO fusion systems enhance protein expression and solubility. Protein Expr Purif 73(2):203–208. https://doi.org/10.1016/j.pep.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  22. TriAltus Bioscience (2020) CL7/Im7 Expression & Purification Protocol: DNA-/RNA-Binding Proteins. https://cdn.shopify.com/s/files/1/0422/6590/3256/files/DNA_RNA-Binding_Proteins.pdf?v=1598475513. Accessed 28 Dec 2021

  23. TriAltus Bioscience (2020) CL7/Im7 Expression & Purification Protocol: Membrane Proteins. https://cdn.shopify.com/s/files/1/0422/6590/3256/files/Membrane_Proteins_Protocol.pdf?v=1598475513. Accessed 28 Dec 2021

  24. TriAltus Bioscience (2020) CL7/Im7 Expression & Purification Protocol: Other Soluble Proteins. https://cdn.shopify.com/s/files/1/0422/6590/3256/files/Other_Soluble_Proteins_Protocol.pdf?v=1598475513. Accessed 28 Dec 2021

  25. Jia X, Crawford T, Zhang AH, Mobli M (2019) A new vector coupling ligation-independent cloning with sortase a fusion for efficient cloning and one-step purification of tag-free recombinant proteins. Protein Expr Purif 161:1–7. https://doi.org/10.1016/j.pep.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  26. Mao H (2004) A self-cleavable sortase fusion for one-step purification of free recombinant proteins. Protein Expr Purif 37(1):253–263. https://doi.org/10.1016/j.pep.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  27. Nallamsetty S, Kapust RB, Tozser J, Cherry S, Tropea JE, Copeland TD, Waugh DS (2004) Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr Purif 38(1):108–115. https://doi.org/10.1016/j.pep.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  28. Benchling (2015) Terrific Broth (TB) Medium Preparation. https://benchling.com/protocols/ap9Ez89n/terrific-broth-tb-medium-preparation. Accessed 28 Dec 2021

  29. Svetlov V, Artsimovitch I (2015) Purification of bacterial RNA polymerase: tools and protocols. Methods Mol Biol 1276:13–29. https://doi.org/10.1007/978-1-4939-2392-2_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuznedelov K, Lamour V, Patikoglou G, Chlenov M, Darst SA, Severinov K (2006) Recombinant Thermus aquaticus RNA polymerase for structural studies. J Mol Biol 359(1):110–121. https://doi.org/10.1016/j.jmb.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  31. Kashkina E, Anikin M, Tahirov TH, Kochetkov SN, Vassylyev DG, Temiakov D (2006) Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res 34(14):4036–4045. https://doi.org/10.1093/nar/gkl559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vassylyeva MN, Lee J, Sekine SI, Laptenko O, Kuramitsu S, Shibata T, Inoue Y, Borukhov S, Vassylyev DG, Yokoyama S (2002) Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta Crystallogr D Biol Crystallogr 58(Pt 9):1497–1500. https://doi.org/10.1107/S0907444902011770

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee R, Rudra P, Prajapati RK, Sengupta S, Mukhopadhyay J (2014) Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification. Tuberculosis (Edinb) 94(4):397–404. https://doi.org/10.1016/j.tube.2014.03.008

    Article  CAS  Google Scholar 

  34. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumazaki K, Tsukazaki T, Nishizawa T, Tanaka Y, Kato HE, Nakada-Nakura Y, Hirata K, Mori Y, Suga H, Dohmae N, Ishitani R, Nureki O (2014) Crystallization and preliminary X-ray diffraction analysis of YidC, a membrane-protein chaperone and insertase from Bacillus halodurans. Acta Crystallogr F Struct Biol Commun 70(Pt 8):1056–1060. https://doi.org/10.1107/S2053230X14012540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, Nureki O (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509(7501):516–520. https://doi.org/10.1038/nature13167

    Article  CAS  PubMed  Google Scholar 

  37. Hunegnaw R, Vassylyeva M, Dubrovsky L, Pushkarsky T, Sviridov D, Anashkina AA, Uren A, Brichacek B, Vassylyev D, Adzhubei AA, Bukrinsky M (2016) Interaction between HIV-1 Nef and Calnexin: from modeling to small molecule inhibitors reversing HIV-induced lipid accumulation. Arterioscler Thromb Vasc Biol 36(9):1758–1771. https://doi.org/10.1161/ATVBAHA.116.307997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franken P, Arold S, Padilla A, Bodeus M, Hoh F, Strub MP, Boyer M, Jullien M, Benarous R, Dumas C (1997) HIV-1 Nef protein: purification, crystallizations, and preliminary X-ray diffraction studies. Protein Sci 6(12):2681–2683. https://doi.org/10.1002/pro.5560061227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wojtowicz-Krawiec A, Sokolowska I, Smorawinska M, Chojnacka-Puchta L, Mikiewicz D, Lukasiewicz N, Marciniak-Rusek A, Wolinowska R, Bierczynska-Krzysik A, Porebska AJ, Kuthan-Styczen J, Gurba L, Borowicz P, Mazurkiewicz A, Plucienniczak G, Plucienniczak A (2014) Use of Ubp1 protease analog to produce recombinant human growth hormone in Escherichia coli. Microb Cell Factories 13(1):113. https://doi.org/10.1186/s12934-014-0113-4

    Article  CAS  Google Scholar 

  40. Srivastava P, Bhattacharaya P, Pandey G, Mukherjee KJ (2005) Overexpression and purification of recombinant human interferon alpha2b in Escherichia coli. Protein Expr Purif 41(2):313–322. https://doi.org/10.1016/j.pep.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  41. Kim CK, Lee CH, Lee SB, Oh JW (2013) Simplified large-scale refolding, purification, and characterization of recombinant human granulocyte-colony stimulating factor in Escherichia coli. PLoS One 8(11):e80109. https://doi.org/10.1371/journal.pone.0080109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL (2019) Antibody structure and function: the basis for engineering therapeutics. Antibodies (Basel) 8(4):55. https://doi.org/10.3390/antib8040055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grant from TriAltus Bioscience to D.G.V and the University of Alabama at Birmingham. Louise Chow is supported by funds from an Anderson Family Endowed Chair through UAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry G. Vassylyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chow, L.T., Vassylyev, D.G. (2022). Application of a Novel CL7/Im7 Affinity System in Purification of Complex and Pharmaceutical Proteins. In: Ayyar, B.V., Arora, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 2466. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2176-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2176-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2175-2

  • Online ISBN: 978-1-0716-2176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics