Skip to main content

Analysis of the Cellular Immune Responses to Vaccines

  • 661 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2465)

Abstract

Flow cytometry, enzyme-linked immunospot (ELISpot), and cellular cytotoxicity assays are powerful tools for studying the cellular immune response toward intracellular pathogens and vaccines in livestock species. Lymphocytes from immunized animals can be purified using Ficoll-Paque density gradient centrifugation and evaluated for their antigen specificity or reactivity toward a vaccine. Here, we describe staining of bovine lymphocytes with peptide (p)-MHC class I tetramers and antibodies specific toward cellular activation markers for evaluation by multiparametric flow cytometry, as well as interferon (IFN)-γ ELISpot and cytotoxicity using chromium (51Cr) release assays. A small component on the use of immunoinformatics for fine-tuning the identification of a minimal CTL epitope is included, and a newly developed and simple assay to measure TCR avidity.

Key words

  • ELISpot
  • Cytotoxicity assay
  • Flow cytometry
  • NetMHCpan
  • Peptide-MHC class I tetramers
  • CTL epitope
  • TCR avidity

This is a preview of subscription content, access via your institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   106.99
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   142.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   197.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Herzenberg LA, De Rosa SC (2000) Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunol Today 21:383–390

    CrossRef  CAS  Google Scholar 

  2. Wilkerson MJ (2012) Principles and applications of flow cytometry and cell sorting in companion animal medicine. Vet Clin North Am Small Anim Pract 42:53–71

    CrossRef  Google Scholar 

  3. Schenkel JM, Fraser KA, Masopust D (2014) Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J Immunol 192:2961–2964

    CrossRef  CAS  Google Scholar 

  4. Schijf MA, Kerperien J, Bastiaans J et al (2013) Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice. PLoS One 8:e75148

    CrossRef  CAS  Google Scholar 

  5. Valentine M, Song K, Maresh GA et al (2013) Expression of the memory marker CD45RO on helper T cells in macaques. PLoS One 8:e73969

    CrossRef  CAS  Google Scholar 

  6. Goto-Koshino Y, Tomiyasu H, Suzuki H et al (2014) Differential expression of CD45 isoforms in canine leukocytes. Vet Immunol Immunopathol 160:118–122

    CrossRef  CAS  Google Scholar 

  7. Whelan AO, Villarreal-Ramos B, Vordermeier HM et al (2011) Development of an antibody to bovine IL-2 reveals multifunctional CD4 T(EM) cells in cattle naturally infected with bovine tuberculosis. PLoS One 6:e29194

    CrossRef  CAS  Google Scholar 

  8. Sims S, Willberg C, Klenerman P (2010) MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 9:765–774

    CrossRef  CAS  Google Scholar 

  9. Clutter MR, Heffner GC, Krutzik PO et al (2010) Tyramide signal amplification for analysis of kinase activity by intracellular flow cytometry. Cytometry A 77:1020–1031

    CrossRef  Google Scholar 

  10. Rothaeusler K, Baumgarth N (2006) Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytometry A 69:249–259

    CrossRef  Google Scholar 

  11. Chavez-Galan L, Arenas-Del Ange MC, Zenteno E et al (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6:15–25

    CrossRef  CAS  Google Scholar 

  12. Slota M, Lim JB, Dang Y et al (2011) ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 10:299–306

    CrossRef  CAS  Google Scholar 

  13. Gray CM, Mlotshwa M, Riou C et al (2009) Human immunodeficiency virus-specific gamma interferon enzyme-linked immunospot assay responses targeting specific regions of the proteome during primary subtype C infection are poor predictors of the course of viremia and set point. J Virol 83:470–478

    CrossRef  CAS  Google Scholar 

  14. Graham SP, Pelle R, Honda Y et al (2006) Theileria parva candidate vaccine antigens recognized by immune bovine cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 103:3286–3291

    CrossRef  CAS  Google Scholar 

  15. Graham SP, Pelle R, Yamage M et al (2008) Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva. Infect Immun 76:685–694

    CrossRef  CAS  Google Scholar 

  16. Saade F, Gorski SA, Petrovsky N (2012) Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses. Expert Rev Vaccines 11:1459–1470

    CrossRef  CAS  Google Scholar 

  17. Migueles SA, Rood JE, Berkley AM et al (2011) Trivalent adenovirus type 5 HIV recombinant vaccine primes for modest cytotoxic capacity that is greatest in humans with protective HLA class I alleles. PLoS Pathog 7:e1002002

    CrossRef  CAS  Google Scholar 

  18. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517

    CrossRef  CAS  Google Scholar 

  19. Kremer M, Suezer Y, Volz A et al (2012) Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 8:e1002557

    CrossRef  CAS  Google Scholar 

  20. Taracha EL, Goddeeris BM, Morzaria SP et al (1995) Parasite strain specificity of precursor cytotoxic T cells in individual animals correlates with cross-protection in cattle challenged with Theileria parva. Infect Immun 63:1258–1262

    CrossRef  CAS  Google Scholar 

  21. Nene V, Svitek N, Toye P et al (2012) Designing bovine T cell vaccines via reverse immunology. Ticks Tick Borne Dis 3:188–192

    CrossRef  Google Scholar 

  22. Svitek N, Hansen AM, Steinaa L et al (2014) Use of "one-pot, mix-and-read" peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle. Vet Res 45:50

    CrossRef  Google Scholar 

  23. Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13

    CrossRef  CAS  Google Scholar 

  24. Nielsen M, Lundegaard C, Blicher T et al (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2:e796

    CrossRef  Google Scholar 

  25. Kedzierska K, La Gruta NL, Davenport MP et al (2005) Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses. Proc Natl Acad Sci U S A 102:11432–11437

    CrossRef  CAS  Google Scholar 

  26. Moffat JM, Hande A, Doherty PC et al (2010) Influenza epitope-specific CD8+ T cell avidity, but not cytokine polyfunctionality, can be determined by TCRbeta clonotype. J Immunol 185:6850–6856

    CrossRef  CAS  Google Scholar 

  27. Goddeeris BM, Morrison WI (1988) Techniques for generation, cloning, and characterization of bovine cytotoxic T cells specific for the protozoan Theileria parva. J Tissue Cult Method 11:101–110

    CrossRef  Google Scholar 

  28. Steinaa L, Saya R, Awino E, a. (2012) Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen. Vet Immunol Immunopathol 145:571–581

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

These methods have not been developed directly under a particular grant and improvements have been done over a prolonged period of time with involvement of several grants. For funding the time of assembling and editing the material, we acknowledge the Bill and Melinda Gates Foundation (BMGF), grant number OPP107879 and the CGIAR Program on Livestock and the CGIAR Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla Steinaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Svitek, N., Taracha, E.L.N., Saya, R., Awino, E., Nene, V., Steinaa, L. (2022). Analysis of the Cellular Immune Responses to Vaccines. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 2465. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2168-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2168-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2167-7

  • Online ISBN: 978-1-0716-2168-4

  • eBook Packages: Springer Protocols