Skip to main content

CRISPR DNA- and RNP-Mediated Genome Editing via Nicotiana benthamiana Protoplast Transformation and Regeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2464))

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated system) has become the multipurpose tool to manipulate plant genome via their programmable sequence recognition, binding, and cleavage activities. Efficient plant genome modification often requires robust plant transformation. For most plant species, the CRISPR/Cas reagents are delivered into plants as plasmids by Agrobacterium-mediated T-DNA transfer or biolistic approaches. However, these methods are generally inefficient, heavily genotype dependent, and low throughput. Among the alternative plant transformation approaches, the protoplast-based transformation holds the potential to directly deliver DNA, RNA, or protein molecules into plant cells in an efficient and high-throughput manner. Here, we presented a robust and simplified protocol for protoplast-based DNA/ribonucleoprotein (RNP )-mediated genome editing in the model species Nicotiana benthamiana. Using this protocol, we have achieved the gene editing efficiency at 30–60% in protoplasts and 50–80% in regenerated calli and plants. The edited protoplasts can be readily regenerated without selection agents owing to highly efficient DNA or preassembled RNP transformation frequency. Lastly, this protocol utilized an improved culture media regime to overcome the complex media composition used in the previous studies. It offers quick turnaround time and higher throughput to facilitate the development of new genetic engineering technologies and holds the promise to combine with other genetic and genomic tools for fundamental and translational plant research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  Google Scholar 

  2. Garneau JE, Dupuis M-È, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  Google Scholar 

  3. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  Google Scholar 

  4. Kelliher T, Starr D, Su X et al (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292

    Article  CAS  Google Scholar 

  5. Biswas S, Li R, Yuan Z et al (2019) Development of methods for effective identification of CRISPR/Cas9-induced indels in rice. Plant Cell Rep 38:503–510

    Article  CAS  Google Scholar 

  6. Svitashev S, Young JK, Schwartz C et al (2015) Targeted Mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  Google Scholar 

  7. Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  Google Scholar 

  8. Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  Google Scholar 

  9. Okada A, Arndell T, Borisjuk N et al (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17:1905–1913

    Article  CAS  Google Scholar 

  10. Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    Article  CAS  Google Scholar 

  11. Kim H, Kim S-T, Ryu J et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  13. Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. elife 2:e00471

    Article  Google Scholar 

  14. Sternberg SH, Redding S, Jinek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  CAS  Google Scholar 

  15. Čermák T, Baltes NJ, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232

    Article  Google Scholar 

  16. Hahn F, Eisenhut M, Mantegazza O, Weber APM (2018) Homology-directed repair of a defective glabrous gene in Arabidopsis with Cas9-based gene targeting. Front Plant Sci 9:424

    Article  Google Scholar 

  17. Ali Z, Shami A, Sedeek K et al (2020) Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biol 3:44

    Article  CAS  Google Scholar 

  18. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  Google Scholar 

  19. Komor AC, Badran AH, Liu DR (2018) Editing the genome without double-stranded DNA breaks. ACS Chem Biol 13:383–388

    Article  CAS  Google Scholar 

  20. Atkins PA, Voytas DF (2020) Overcoming bottlenecks in plant gene editing. Curr Opin Plant Biol 54:79–84

    Article  CAS  Google Scholar 

  21. Lee K, Eggenberger AL, Banakar R et al (2019) CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Mol Biol 99:317–328

    Article  CAS  Google Scholar 

  22. Banakar R, Eggenberger AL, Lee K et al (2019) High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep 9:19902

    Article  CAS  Google Scholar 

  23. Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  Google Scholar 

  24. Luo S, Li J, Stoddard TJ et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427

    Article  CAS  Google Scholar 

  25. Weiss T, Wang C, Kang X et al (2020) Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis. Plant J. https://doi.org/10.1111/tpj.14949

  26. Li J, Stoddard TJ, Demorest ZL et al (2016) Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J 14:533–542

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  CAS  Google Scholar 

  28. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  Google Scholar 

  29. Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

    Article  CAS  Google Scholar 

  30. Naim F, Nakasugi K, Crowhurst RN et al (2012) Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS One 7:e52717

    Article  CAS  Google Scholar 

  31. Philips JG, Naim F, Lorenc MT et al (2017) The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence. PLoS One 12:e0171311

    Article  Google Scholar 

  32. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  Google Scholar 

  33. Čermák T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    Article  Google Scholar 

  34. Inazuka M, Wenz HM, Sakabe M et al (1997) A streamlined mutation detection system: multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res 7:1094–1103

    Article  CAS  Google Scholar 

  35. Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  CAS  Google Scholar 

  36. Pinello L, Canver MC, Hoban MD et al (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34:695–697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chunfang Wang, Trevor Weiss, Meredith Song, McKenna Quandth, and Kaisa Bornhoft for their assistance. We would like to thank Dr. Kan Wang for the critical reading of the manuscript. This project was partially supported by National Science Foundation Plant Genome Research Program Grants 2040218 to F.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Banakar, R., Rai, K.M., Zhang, F. (2022). CRISPR DNA- and RNP-Mediated Genome Editing via Nicotiana benthamiana Protoplast Transformation and Regeneration. In: Wang, K., Zhang, F. (eds) Protoplast Technology. Methods in Molecular Biology, vol 2464. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2164-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2164-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2163-9

  • Online ISBN: 978-1-0716-2164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics