Skip to main content

Phosphoproteomic Approaches to Evaluate ABA Signaling

  • Protocol
  • First Online:
Abscisic Acid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2462))

  • 617 Accesses

Abstract

Abscisic acid (ABA) is a major phytohormone that regulates various processes in plants (e.g., seed dormancy/germination, abiotic/biotic stress responses). As protein phosphorylation is involved in the major pathways of ABA signaling, it is necessary to elucidate the phosphosignaling pathway involved in the ABA response. Phosphoproteomics enables determination of the proteins phosphorylated in vivo, and recent studies have applied a comparative phosphoproteomic approach to analyze ABA signaling in plants. For example, ABA-responsive phosphoproteins were identified in barley embryos. Furthermore, a phosphoproteomic approach is useful for screening protein kinase substrates by comparative analysis using kinase knockout mutants. Here, some technical points regarding phosphoproteomic analyses of ABA responses in plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

    Article  CAS  PubMed  Google Scholar 

  2. Umezawa T, Nakashima K, Miyakawa T et al (2010) Molecular basis of the core regulatory network in abscisic acid responses: sensing, signaling, and transport. Plant Cell Physiol 51:1821–1839. https://doi.org/10.1093/pcp/pcq156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Umezawa T, Sugiyama N, Mizoguchi M et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593. https://doi.org/10.1073/pnas.0907095106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Umezawa T, Sugiyama N, Takahashi F et al (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8. https://doi.org/10.1126/scisignal.2003509

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Xue L, Batelli G et al (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci 110:11205–11210. https://doi.org/10.1073/pnas.1308974110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221. https://doi.org/10.1146/annurev.pharmtox.011008.145606

    Article  CAS  PubMed  Google Scholar 

  7. de la Fuente van Bentem S, Hirt H (2007) Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant Sci 12:404–411. https://doi.org/10.1016/j.tplants.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  8. Peck SC (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J Exp Bot 57:1523–1527. https://doi.org/10.1093/jxb/erj126

    Article  CAS  PubMed  Google Scholar 

  9. Koenig T, Menze BH, Kirchner M et al (2008) Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 7:3708–3717. https://doi.org/10.1021/pr700859x

    Article  CAS  PubMed  Google Scholar 

  10. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989. https://doi.org/10.1016/1044-0305(94)80016-2

    Article  CAS  Google Scholar 

  11. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  Google Scholar 

  12. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277. https://doi.org/10.1038/ncomms6277

    Article  CAS  Google Scholar 

  13. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24. https://doi.org/10.1002/pmic.201200439

    Article  CAS  Google Scholar 

  14. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467. https://doi.org/10.1093/bioinformatics/bth092

    Article  CAS  Google Scholar 

  15. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods 14:513–520. https://doi.org/10.1038/nmeth.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  Google Scholar 

  17. Schilling B, Rardin MJ, MacLean BX et al (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214. https://doi.org/10.1074/mcp.M112.017707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weisser H, Choudhary JS (2017) Targeted feature detection for data-dependent shotgun proteomics. J Proteome Res 16:2964–2974. https://doi.org/10.1021/acs.jproteome.7b00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Griffin NM, Yu J, Long F et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–89. https://doi.org/10.1038/nbt.1592

    Article  CAS  PubMed  Google Scholar 

  20. Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein*S. Mol Cell Proteomics 4:1265–1272. https://doi.org/10.1074/mcp.M500061-MCP200

    Article  CAS  PubMed  Google Scholar 

  21. Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5:2339–2347. https://doi.org/10.1021/pr060161n

    Article  CAS  PubMed  Google Scholar 

  22. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa S, Barrero JM, Takahashi F et al (2019) Comparative phosphoproteomic analysis reveals a decay of ABA signaling in barley embryos during after-ripening. Plant Cell Physiol 60:2758–2768. https://doi.org/10.1093/pcp/pcz163

    Article  CAS  PubMed  Google Scholar 

  24. Ma K, Vitek O, Nesvizhskii AI (2012) A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet. BMC Bioinformatics 13:S1. https://doi.org/10.1186/1471-2105-13-S16-S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shteynberg DD, Deutsch EW, Campbell DS et al (2019) PTMProphet: fast and accurate mass modification localization for the trans-proteomic pipeline. J Proteome Res 18:4262–4272. https://doi.org/10.1021/acs.jproteome.9b00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Science and Technology Agency program PRESTO and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishi Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamashita, K., Umezawa, T. (2022). Phosphoproteomic Approaches to Evaluate ABA Signaling. In: Yoshida, T. (eds) Abscisic Acid. Methods in Molecular Biology, vol 2462. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2156-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2156-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2155-4

  • Online ISBN: 978-1-0716-2156-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics