Skip to main content

Nondegenerate Saturation Mutagenesis: Library Construction and Analysis via MAX and ProxiMAX Randomization

  • Protocol
  • First Online:
Directed Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2461))

Abstract

Protein engineering can enhance desirable features and improve performance outside of the natural context. Several strategies have been adopted over the years for gene diversification, and engineering of modular proteins in particular is most effective when a high-throughput, library-based approach is employed. Nondegenerate saturation mutagenesis plays a dynamic role in engineering proteins by targeting multiple codons to generate massively diverse gene libraries. Herein, we describe the nondegenerate saturation mutagenesis techniques that we have developed for contiguous (ProxiMAX) and noncontiguous (MAX) randomized codon generation to create precisely defined, diverse gene libraries, in the context of other fully nondegenerate strategies. ProxiMAX randomization comprises saturation cycling with repeated cycles of blunt-ended ligation, type IIS restriction, and PCR amplification, and is now a commercially automated process predominantly used for antibody library generation. MAX randomization encompasses a manual process of selective hybridisation between individual custom oligonucleotide mixes and a conventionally randomized template and is principally employed in the research laboratory setting, to engineer alpha helical proteins and active sites of enzymes. DNA libraries generated using either technology create high-throughput amino acid substitutions via codon randomization, to generate genetically diverse clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cobb RE, Chao R, Zhao H (2013) Directed evolution: past, present and future. Am Inst Chem Eng 59(5):1432–1440. https://doi.org/10.1002/aic.13995

    Article  CAS  Google Scholar 

  2. Yuan L, Kurek I, English J, Keenan R (2005) Laboratory-directed protein evolution. Microbiol Mol Biol Rev 69(3):373–392. https://doi.org/10.1128/MMBR.69.3.373-392.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnold FH, Georgiou G (eds) (2003) Directed evolution library creation: methods and protocols. In: Methods in molecular biology, vol 231. Humana Press, Totowa, NJ. https://www.springer.com/gp/book/9781588292858

  4. Jackel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Annu Rev Biochem 37:153–173. https://doi.org/10.1146/annurev.biophys.37.032807.125832

    Article  CAS  Google Scholar 

  5. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903

    Article  CAS  PubMed  Google Scholar 

  6. Holm L (1986) Codon usage and gene expression. Nucleic Acids Res 14(7):3075–3087. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC339722/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Virnekäs B, Ge L, Plückthun A, Schneider KC, Wellnhofer G, Moroney SE (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 22(25):5600–5607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC310122/

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hughes MD, Nagel DA, Santos AF, Sutherland AJ, Hine AV (2003) Removing the redundancy from randomised gene libraries. J Mol Biol 331(5):973–979. https://pubmed.ncbi.nlm.nih.gov/12927534/

    Article  CAS  PubMed  Google Scholar 

  9. Ashraf M, Hughes MD, Hine AV Oligonucleotide library encoding randomised peptides. Patents EP1907548 (2011); EP2236612 (2012); US8357638 (2013) and CA2616252 (2016)

    Google Scholar 

  10. Ashraf M, Frigotto L, Smith ME, Patel S, Hughes MD, Poole AJ, Hebaishi HRM, Ullman CG, Hine AV (2013) ProxiMAX randomization: a new technology for non-degenerate saturation mutagenesis of contiguous codons. Biochem Soc Trans 41(5):1189–1194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782830/pdf/bst0411189.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frigotto L, Smith ME, Brankin C, Sedani A, Cooper SE, Kanwar N, Evans D, Svobodova S, Baar C, Ullman CG, Glanville J, Hine AV (2015) Codon precise, synthetic, antibody fragment libraries built using automated hexamer codon additions and validated through next generation sequencing. Antibodies 4:88–102. https://www.mdpi.com/2073-4468/4/2/88

    Article  CAS  Google Scholar 

  12. Poole A, Frigotto L, Smith ME, Baar C, Ivanova-Berndt G, Jaulent A, Stace C, Ullman CG, Hine AV (2019) A C-terminal cysteine residue is required for peptide-based inhibition of the NGF/TrkA interaction at nM concentrations: implications for peptide-based analgesics. Sci Rep 9:Article no. 930. https://www.nature.com/articles/s41598-018-37585-5

    Article  PubMed  Google Scholar 

  13. Ferreira Amaral MM (2019) Aminoacyl-tRNA synthetases: investigations of tRNA specificity for application in ProxiMAX/synthetic biology. PhD thesis, Aston University

    Google Scholar 

  14. Van den Brulle J, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O’Connell T, O’Connell D, Auckenthaler A, Schwer H (2008) A novel solid phase technology for high-throughput gene synthesis. BioTechniques 45(3):340–343. https://pubmed.ncbi.nlm.nih.gov/18778261/

    Article  PubMed  Google Scholar 

  15. www.businesswire.com (2006) Sloning announces the development of SlonoMax(TM) gene variant libraries of previously unmatched quality—creating new possibilities for the directed evolution of proteins. https://www.businesswire.com/news/home/20060928005357/en/Sloning-Announces-the-Development-Of-SlonoMax-TM-Gene-Variant-Libraries-of-Previously-Unmatched-Quality%2D%2D-Creating-New-Possibilities-for-the-Directed-Evolution-of-Proteins/

  16. Nov Y (2013) Fitness loss and library size determination in saturation mutagenesis. PLoS One 8(7):e68069. https://doi.org/10.1371/journal.pone.0068069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://science.sciencemag.org/content/228/4705/1315.abstract

    Article  CAS  PubMed  Google Scholar 

  18. Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9:e382. https://www.nature.com/articles/s41598-018-37212-3

    Article  Google Scholar 

  19. Hanes J, Plückthun A (1987) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942. https://www.pnas.org/content/94/10/4937

    Article  Google Scholar 

  20. Odegrip R, Coomber D, Eldridge B, Hederer R, Kuhlman PA, Fitz U, Gerald CK, McGregor D (2004) CIS display: in vitro selection of peptides from libraries of protein–DNA complexes. Proc Natl Acad Sci U S A 101:2806–2810. https://www.pnas.org/content/101/9/2806.short

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pryor RJ, Wittwer CT (2006) Real-time polymerase chain reaction and melting curve analysis. Methods Mol Biol 36:19–32. https://doi.org/10.1385/1-59745-074-X:19

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union Horizon 2020 FET OPEN program under grant agreement No. 764434 (A.C., B.P.G.W., and M.A.) and BBSRC Grant No. BB/L015633/1 (M.M.F.A.). The authors gratefully acknowledge Dr. Andrew J. Sutherland (Aston University) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Hine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chembath, A., Wagstaffe, B.P.G., Ashraf, M., Amaral, M.M.F., Frigotto, L., Hine, A.V. (2022). Nondegenerate Saturation Mutagenesis: Library Construction and Analysis via MAX and ProxiMAX Randomization. In: Currin, A., Swainston, N. (eds) Directed Evolution. Methods in Molecular Biology, vol 2461. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2152-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2152-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2151-6

  • Online ISBN: 978-1-0716-2152-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics