Skip to main content
Book cover

Chromatin pp 301–320Cite as

Circular Chromosome Conformation Capture Sequencing (4C-Seq ) in Primary Adherent Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2458)

Abstract

The three-dimensional structure of the genome is highly organized and is an important aspect of gene regulation. Chromatin interactions can be identified using chromosome conformation capture-based techniques, which rely on proximity ligation. Of these techniques, circular chromosome conformation capture sequencing (4C-seq) is used to identify all chromatin interactions occurring with a single chromosomal location (one versus all). Here we describe a 4C-seq protocol that has been optimized for primary adherent cells, for which the first digestion step is inefficient using standard 4C-seq protocols. It can, however, also be applied to other cell or tissue types. This protocol utilizes a standard DNA library preparation method using a commercial kit, and includes a description of the data processing steps.

Key words

  • 4C-seq
  • Chromosome conformation capture
  • Genome organization
  • Chromatin architecture
  • Next-generation sequencing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2140-0_16
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2140-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grob S, Cavalli G (2018) Technical review: a Hitchhiker’s guide to chromosome conformation capture. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, NY, pp 233–246

    CrossRef  Google Scholar 

  2. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    CAS  CrossRef  Google Scholar 

  3. Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    CAS  CrossRef  Google Scholar 

  4. Marsman J, Thomas A, Osato M et al (2017) A DNA contact map for the mouse Runx1 gene identifies novel Haematopoietic enhancers. Sci Rep 7:13347

    CrossRef  Google Scholar 

  5. Marsman J, Gimenez G, Day RC et al (2020) A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Hum Mol Genet 29:554–565

    CAS  CrossRef  Google Scholar 

  6. van de Werken HJG, de Vree PJP, Splinter E et al (2012) 4C technology: protocols and data analysis. Methods Enzymol 513:89–112

    CrossRef  Google Scholar 

  7. Krijger PHL, Geeven G, Bianchi V et al (2020) 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170:17–32

    CAS  CrossRef  Google Scholar 

  8. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for StatisticalComputing, Vienna, Austria. http://www.R-project.org/

  9. Williams RL, Starmer J, Mugford JW et al (2014) fourSig: a method for determining chromosomal interactions in 4C-Seq data. Nucleic Acids Res 42:e68

    CAS  CrossRef  Google Scholar 

  10. Klein FA, Pakozdi T, Anders S et al (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics 31:3085–3091

    CAS  CrossRef  Google Scholar 

  11. Raviram R, Rocha PP, Müller CL et al (2016) 4C-ker: a method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments. PLoS Comput Biol 12:e1004780

    CrossRef  Google Scholar 

  12. Geeven G, Teunissen H, de Laat W et al (2018) peakC: a flexible, non-parametric peak calling package for 4C and capture-C data. Nucleic Acids Res 46:e91

    CrossRef  Google Scholar 

  13. Thongjuea S, Stadhouders R, Grosveld FG et al (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res 41:e132

    CAS  CrossRef  Google Scholar 

  14. Brouwer RWW, van den Hout MCGN, van IJcken WFJ et al (2017) Unbiased interrogation of 3D genome topology using chromosome conformation capture coupled to high-throughput sequencing (4C-Seq). In: Wajapeyee N, Gupta R (eds) Eukaryotic transcriptional and post-transcriptional gene expression regulation. Springer, New York, NY, pp 199–220

    CrossRef  Google Scholar 

  15. Andrews, Simon FastQC: A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  16. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J 17:10–12

    CrossRef  Google Scholar 

  17. Aronesty E Ea-utils: command-line tools for processing biological sequencing data. ExpressionAnalysis. https://github.com/ExpressionAnalysis/ea-utils

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  CrossRef  Google Scholar 

  19. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

    Google Scholar 

  20. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  CrossRef  Google Scholar 

  21. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors were supported in this work by grants from the Heart Foundation of New Zealand (post-doctoral research fellowship [1691] and small project grant [1804]), the Dunedin School of Medicine Dean’s Bequest fund, and Health Research Council of New Zealand Grants [14-155, 17-402].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Marsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Marsman, J., Day, R.C., Gimenez, G. (2022). Circular Chromosome Conformation Capture Sequencing (4C-Seq ) in Primary Adherent Cells. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols