Skip to main content

Profiling Protein–DNA Interactions Cell-Type-Specifically with Targeted DamID

  • Protocol
  • First Online:
Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2458))

  • 2233 Accesses

Abstract

Targeted DamID (TaDa) is a means of profiling the binding of any DNA-associated protein cell-type specifically, including transcription factors, RNA polymerase, and chromatin-modifying proteins. The technique is highly sensitive, highly reproducible, requires no mechanical disruption, cell isolation or antibody purification, and can be performed by anyone with basic molecular biology knowledge. Here, we describe the TaDa method and downstream bioinformatics data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26:101–112. https://doi.org/10.1016/j.devcel.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marshall OJ, Southall TD, Cheetham SW, Brand AH (2016) Cell-type-specific profiling of protein–DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nat Protoc 11:1586–1598. https://doi.org/10.1038/nprot.2016.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308. https://doi.org/10.1038/85871

    Article  CAS  PubMed  Google Scholar 

  4. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428. https://doi.org/10.1038/74487

    Article  CAS  PubMed  Google Scholar 

  5. Luo GZ, He C (2017) DNA N 6-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol 24:503–506. https://doi.org/10.1038/nsmb.3412

    Article  CAS  PubMed  Google Scholar 

  6. Doupé DP, Marshall OJ, Dayton H, Brand AH, Perrimon N (2018) Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci 115:12218–12223. https://doi.org/10.1073/pnas.1719169115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marshall OJ, Brand AH (2017) Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nat Commun 8:2271. https://doi.org/10.1038/s41467-017-02385-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aughey GN, Estacio Gomez A, Thomson J, Yin H, Southall TD (2018) CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. elife 7:1–22. https://doi.org/10.7554/elife.32341

    Article  Google Scholar 

  9. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951. https://doi.org/10.1038/nature06947

    Article  CAS  PubMed  Google Scholar 

  10. Cheetham SW, Brand AH (2018) RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites. Nat Struct Mol Biol 25:109–114. https://doi.org/10.1038/s41594-017-0006-4

    Article  CAS  PubMed  Google Scholar 

  11. Luukkonen BG, Tan W, Schwartz S (1995) Efficiency of reinitiation of translation on human immunodeficiency virus type 1 mRNAs is determined by the length of the upstream open reading frame and by intercistronic distance. J Virol 69:4086–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  CAS  PubMed  Google Scholar 

  13. Marshall OJ, Brand AH (2015) damidseq_pipeline: an automated pipeline for processing DamID sequencing datasets. Bioinformatics 31:3371–3373. https://doi.org/10.1093/bioinformatics/btv386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delandre C, McMullen JPD, Marshall OJ (2020) Membrane-bound GFP-labelled vectors for Targeted DamID allow simultaneous profiling of expression domains and DNA binding. bioRxiv 1–4. https://doi.org/10.1101/2020.04.17.045948

  15. Aughey GN, Delandre C, Southall TD, Marshall OJ (2020) FlyORF-TaDa allows rapid generation of new lines for in vivo cell-type specific profiling of protein-DNA interactions in Drosophila melanogaster. bioRxiv 2020.08.06.239251. https://doi.org/10.1101/2020.08.06.239251

  16. Tosti L, Ashmore J, Tan BSN, Carbone B, Mistri TK, Wilson V, Tomlinson SR, Kaji K (2018) Mapping transcription factor occupancy using minimal numbers of cells in vitro and in vivo. Genome Res 28:592–605. https://doi.org/10.1101/gr.227124.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheetham SW, Gruhn WH, van den Ameele J, Krautz R, Southall TD, Kobayashi T, Surani MA, Brand AH (2018) Targeted DamID reveals differential binding of mammalian pluripotency factors. Development 145:dev170209. https://doi.org/10.1242/dev.170209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katsanos D, Barkoulas M (2020) Tissue-specific transcription factor target identification in the Caenorhabditis elegans epidermis using targeted DamID. bioRxiv

    Google Scholar 

  19. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramírez F, Bhardwaj V, Arrigoni L, Lam KC, Grüning BA, Villaveces J, Habermann B, Akhtar A, Manke T (2018) High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun 9(1):189. https://doi.org/10.1038/s41467-017-02525-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, Conesa A (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 43(21):e140. https://doi.org/10.1093/nar/gkv711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatch HAM, Belalcazar HM, Marshall OJ, Secombe JA (2021)KDM5-Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation. Elife. 2021 Mar 17;10:e63886. https://doi.org/10.7554/eLife.63886. PMID: 33729157; PMCID: PMC7997662

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. Marshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marshall, O.J., Delandre, C. (2022). Profiling Protein–DNA Interactions Cell-Type-Specifically with Targeted DamID. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics