Skip to main content

Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation

  • Protocol
  • First Online:
Proteomics in Systems Biology

Abstract

Nuclear receptors, including hormone receptors, perform their cellular activities by modulating their protein–protein interactions. They engage with specific ligands and translocate to the nucleus, where they bind the DNA and activate extensive transcriptional programs. Therefore, gaining a comprehensive overview of the protein–protein interactions they establish requires methods that function effectively throughout the cell with fast dynamics and high reproducibility. Focusing on estrogen receptor alpha (ESR1), the founding member of the nuclear receptor family, this chapter describes a new lentiviral system that allows the expression of TurboID-hemagglutinin (HA)-2 × Strep tagged proteins in mammalian cells to perform fast proximity biotinylation assays. Key validation steps for these reagents and their use in interactome mapping experiments in two distinct breast cancer cell lines are described. Our protocol enabled the quantification of ESR1 interactome generated by cellular contexts that were hormone-sensitive or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gustafsson J-A (2016) Historical overview of nuclear receptors. J Steroid Biochem Mol Biol 157:3–6. https://doi.org/10.1016/j.jsbmb.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  2. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839. https://doi.org/10.1016/0092-8674(95)90199-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72(1):247–272. https://doi.org/10.1146/annurev-physiol-021909-135917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McEwan Iain JI (2016) The nuclear receptor superfamily at thirty. Methods Mol Biol (Clifton, NJ) 1443:3–9

    Article  CAS  Google Scholar 

  5. Weikum ER, Liu X, Ortlund EA (2018) The nuclear receptor superfamily: a structural perspective. Protein Sci 27(11):1876–1892. https://doi.org/10.1002/pro.3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berrabah W, Aumercier P, Lefebvre P et al (2011) Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett 585(11):1640–1650. https://doi.org/10.1016/j.febslet.2011.03.066

    Article  CAS  PubMed  Google Scholar 

  7. Sever R, Glass CK (2013) Signaling by nuclear receptors. Cold Spring Harb Perspect Biol 5(3):a016709–a016709. https://doi.org/10.1101/cshperspect.a016709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huttlin EL, Bruckner RJ, Paulo JA et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505–509. https://doi.org/10.1038/nature22366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144(6):986–998. https://doi.org/10.1016/j.cell.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Sahni N, Yi S (2016) Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Oncotarget 7(48):78841–78849. https://doi.org/10.18632/oncotarget.12879

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gulfidan G, Turanli B, Beklen H et al (2020) Pan-cancer mapping of differential protein-protein interactions. Sci Rep 10(1):3272. https://doi.org/10.1038/s41598-020-60127-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J-W, Lee H-M, Wang Y et al (2016) Interactome-transcriptome analysis discovers signatures complementary to GWAS loci of type 2 diabetes. Sci Rep 6(1):35228. https://doi.org/10.1038/srep35228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haenig C, Atias N, Taylor AK et al (2020) Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep 32(7):108050. https://doi.org/10.1016/j.celrep.2020.108050

    Article  CAS  PubMed  Google Scholar 

  14. Ganapathiraju MK, Thahir M, Handen A et al (2016) Schizophrenia interactome with 504 novel protein–protein interactions. NPJ Schizophr 2(1):16012. https://doi.org/10.1038/npjschz.2016.12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Agbo L, Lambert J-P (2019) Proteomics contribution to the elucidation of the steroid hormone receptors functions. J Steroid Biochem Mol Biol 192:105387

    Article  CAS  PubMed  Google Scholar 

  16. Vélot L, Lessard F, Bérubé-Simard F-A et al (2021) Proximity-dependent mapping of the androgen receptor identifies kruppel-like factor 4 as a functional partner. Mol Cell Proteomics 20:100064. https://doi.org/10.1016/j.mcpro.2021.100064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gingras A-C, Abe KT, Raught B (2019) Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 48:44–54. https://doi.org/10.1016/j.cbpa.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  18. De Boer E, Rodriguez P, Bonte E et al (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci 100(13):7480–7485. https://doi.org/10.1073/pnas.1332608100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim DI, Jensen SC, Noble KA et al (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27(8):1188–1196. https://doi.org/10.1091/mbc.e15-12-0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim DI, Kc B, Zhu W et al (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci 111(24):E2453–E2461. https://doi.org/10.1073/pnas.1406459111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lobingier BT, Hüttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169(2):350–360.e312. https://doi.org/10.1016/j.cell.2017.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12(1):51–54. https://doi.org/10.1038/nmeth.3179

    Article  CAS  PubMed  Google Scholar 

  24. Han Y, Branon TC, Martell JD et al (2019) Directed evolution of split APEX2 peroxidase. ACS Chem Biol 14(4):619–635. https://doi.org/10.1021/acschembio.8b00919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oughtred R, Stark C, Breitkreutz B-J et al (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079

    Article  CAS  PubMed  Google Scholar 

  26. Lambert J-P, Ivosev G, Couzens AL et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10(12):1239–1245. https://doi.org/10.1038/nmeth.2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambert J-P, Picaud S, Fujisawa T et al (2019) Interactome rewiring following pharmacological targeting of BET bromodomains. Mol Cell 73(3):621–638.e617. https://doi.org/10.1016/j.molcel.2018.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rappsilber Juri J (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Knight JD, Zhang JP et al (2016) Data independent acquisition analysis in ProHits 4.0. J Proteome 149:64–68. https://doi.org/10.1016/j.jprot.2016.04.042

    Article  CAS  Google Scholar 

  30. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. https://doi.org/10.1093/bioinformatics/btn323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9(7–8):745–754. https://doi.org/10.1002/prca.201400164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teo G, Liu G, Zhang J et al (2014) SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J Proteome 100:37–43. https://doi.org/10.1016/j.jprot.2013.10.023

    Article  CAS  Google Scholar 

  33. Branon TC, Bosch JA, Sanchez AD et al (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887. https://doi.org/10.1038/nbt.4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samavarchi-Tehrani P, Abdouni H, Samson R et al (2018) A versatile lentiviral delivery toolkit for proximity-dependent biotinylation in diverse cell types. Mol Cell Proteomics 17(11):2256–2269. https://doi.org/10.1074/mcp.TIR118.000902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalvai M, Loehr J, Jacquet K et al (2015) A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep 13(3):621–633. https://doi.org/10.1016/j.celrep.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  36. Feldman DH, Lossin C (2014) The Nav channel bench series: plasmid preparation. MethodsX 1:6–11. https://doi.org/10.1016/j.mex.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Project Grants from the Canadian Institutes of Health Research (PJT-168969, and PJT-152948) and Leader’s Opportunity Funds from the Canada Foundation for Innovation (37454, 41426). L.A. is supported by a scholarship from the Fondation du CHU de Québec. S.A.B. is supported by a doctoral scholarship from the Fonds de Recherche du Québec - Santé (FRQS). P.-E.K.T. is supported by a Bourse Distinction Luc Bélanger from the Cancer Research Center – Université Laval and by a doctoral scholarship from the FRQS. J.-P.L. is supported by a Junior 1 salary award from the FRQS. A.F.-T. is a tier 2 Canada Research Chair in Molecular Virology and Genomic Instability and is supported by the Fondation J.-Louis Lévesque.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amélie Fradet-Turcotte or Jean-Philippe Lambert .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

SAINTexpress results of TurboID analysis of ESR1 in MCF-7 and MDA-MB-231 cells (XLSX 232 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Agbo, L., Blanchet, S.A., Kougnassoukou Tchara, PE., Fradet-Turcotte, A., Lambert, JP. (2022). Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. In: Geddes-McAlister, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 2456. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2124-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2124-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2123-3

  • Online ISBN: 978-1-0716-2124-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics