Skip to main content

Spatiotemporal Tracking of Different Cell Populations in Cancer Organoid Models for Investigations on Photodynamic Therapy

Part of the Methods in Molecular Biology book series (MIMB,volume 2451)

Abstract

Three-dimensional (3D) in vitro models of tumors are gaining interest as versatile platforms for treatment screening. In this context, heterocellular cultures in which various cell types are co-cultured are being explored to investigate whether partner cells can influence the treatment efficacies. However, when the cells are co-cultured, it is challenging to distinguish them and it becomes impossible to identify whether the treatment affects each cell line in a similar way or if there is a certain selectivity. Here, we propose a protocol in which different cell types are pre-labeled with fluorescent reporters prior to 3D culture initiation. Subsequently, the internal architecture of the 3D cancer models can be longitudinally monitored for model characterization, and to potentially detect architectural and treatment selectivity in response to therapy. This protocol employs quantum dots as non-photobleaching dyes and two-photon excited microscopy as a widely accessible imaging modality. In combination with an appropriate image analysis workflow, this protocol will help to investigate the architectural development of heterotypic microtumor/spheroid/organoid models and possibly identify treatment efficacies on individual cell populations represented within the models.

Key words

  • Heterocellular culture
  • Longitudinal tracking
  • Spheroid architecture
  • Quantum dots
  • Pancreatic cancer organoids
  • Fibroblasts
  • Cancer stroma

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2099-1_7
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2099-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Joyce JA, Pollard JW (2008) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2:897–909

    CAS  CrossRef  PubMed  Google Scholar 

  3. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049

    CAS  CrossRef  PubMed  Google Scholar 

  4. Broekgaarden M, Anbil S, Bulin A-L, Obaid G, Mai Z, Baglo Y, Rizvi I, Hasan T (2019) Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials 222:119421

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H et al (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–483

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Perera RM, Bardeesy N (2015) Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov 5:1247–1261

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    CAS  CrossRef  PubMed  Google Scholar 

  8. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW et al (2014) Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 110:1698–1704

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Huang H-C, Mallidi S, Liu J, Chiang C-T, Mai Z, Goldschmidt R, Ebrahim-Zadeh N, Rizvi I, Hasan T (2016) Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer. Cancer Res 76:1066–1077

    CAS  CrossRef  PubMed  Google Scholar 

  12. Broekgaarden M, Rizvi I, Bulin A-L, Petrovic L, Goldschmidt R, Celli JP, Hasan T, Broekgaarden M, Rizvi I, Bulin A-L et al (2018) Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget 9:13009–13022

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, Finkelstein D, Hasan T (2010) Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res 70:9319–9328

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Bulin A-L, Broekgaarden M, Simeone D, Hasan T (2019) Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 10:2625–2643

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Madsen SJ, Sun C-H, Tromberg BJ, Cristini V, De Magalhães N, Hirschberg H (2006) Multicell tumor spheroids in photodynamic therapy. Lasers Surg Med 38:555–564

    CrossRef  PubMed  Google Scholar 

  16. Celli JP, Rizvi I, Evans CL, Abu-Yousif AO, Hasan T (2010) Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J Biomed Opt 15:051603

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Rizvi I, Bulin A-L, Briars E, Anbil S, Hasan T (2016) Chapter 11. Mind the gap: 3D models in photodynamic therapy. In: Photodynamic medicine, pp 197–221

    Google Scholar 

  18. Foster TH, Hartley DF, Nichols MG, Hilf R (1993) Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res 53:1249–1254

    CAS  PubMed  Google Scholar 

  19. Bigelow CE, Mitra S, Knuechel R, Foster TH (2001) ALA- and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids. Br J Cancer 85:727–734

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Finlay JC, Mitra S, Patterson MS, Foster TH (2004) Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms. Phys Med Biol 49:4837–4860

    CAS  CrossRef  PubMed  Google Scholar 

  21. Georgakoudi I, Foster TH (1998) Effects of the subcellular redistribution of two nile blue derivatives on photodynamic oxygen consumption. Photochem Photobiol 68:115–122

    CAS  CrossRef  PubMed  Google Scholar 

  22. Glidden MD, Celli JP, Massodi I, Rizvi I, Pogue BW, Hasan T (2012) Image-based quantification of benzoporphyrin derivative uptake, localization, and Photobleaching in 3D tumor models, for optimization of PDT parameters. Theranostics 2:827–839

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Alemany-Ribes M, García-Díaz M, Busom M, Nonell S, Semino CE (2013) Toward a 3D cellular model for studying in vitro the outcome of photodynamic treatments: accounting for the effects of tissue complexity. Tissue Eng Part A 19:1665–1674

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Broekgaarden M, Bulin A-L, Frederick J, Mai Z, Hasan T (2019) Tracking photodynamic- and chemotherapy-induced redox state perturbations in 3D culture models of pancreatic cancer: a tool for identifying therapy-induced metabolic changes. J Clin Med 8:1399

    CAS  CrossRef  PubMed Central  Google Scholar 

  25. Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, Godin B (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 4:6468

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Åkerfelt M, Bayramoglu N, Robinson S, Toriseva M, Schukov H-P, Härmä V, Virtanen J, Sormunen R, Kaakinen M, Kannala J et al (2015) Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention. Oncotarget 6:30035–30056

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Robinson S, Guyon L, Nevalainen J, Toriseva M, Åkerfelt M, Nees M (2015) Segmentation of image data from complex organotypic 3D models of cancer tissues with Markov random fields. PLoS One 10:e0143798

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Pankova D, Chen Y, Terajima M, Schliekelman MJ, Baird BN, Fahrenholtz M, Sun L, Gill BJ, Vadakkan TJ, Kim MP et al (2016) Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 14:287–295

    CAS  CrossRef  PubMed  Google Scholar 

  29. Roberts GC, Morris PG, Moss MA, Maltby SL, Palmer CA, Nash CE, Smart E, Holliday DL, Speirs V (2016) An evaluation of matrix-containing and humanised matrix-free 3-dimensional cell culture systems for studying breast cancer. PLoS One 11:e0157004

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Zhu L, Fan X, Wang B, Liu L, Yan X, Zhou L, Zeng Y, Poznansky MC, Wang L, Chen H et al (2017) Biomechanically primed liver microtumor array as a high-throughput mechanopharmacological screening platform for stroma-reprogrammed combinatorial therapy. Biomaterials 124:12–24

    CAS  CrossRef  PubMed  Google Scholar 

  31. Bulin A-L, Broekgaarden M, Hasan T (2017) Comprehensive high-throughput image analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci Rep 7:16645

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Obaid G, Bano S, Mallidi S, Broekgaarden M, Kuriakose J, Silber Z, Bulin A-L, Wang Y, Mai Z, Jin W et al (2019) Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmuno-nanoconjugates: towards conquering desmoplasia? Nano Lett 19:7573–7587

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    CAS  CrossRef  PubMed  Google Scholar 

  34. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Systems Man Cybernetics 9:62–66

    CrossRef  Google Scholar 

Download references

Acknowledgments

A-L B was supported by a Bullock-Wellman Fellowship and awards from the Bettencourt-Schueller and Philippe foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyaba Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Bulin, AL., Hasan, T. (2022). Spatiotemporal Tracking of Different Cell Populations in Cancer Organoid Models for Investigations on Photodynamic Therapy. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols