Skip to main content

Super-Resolution Imaging of Intracellular Lipid Nanocarriers to Study Drug Delivery in Photodynamic Therapy

Part of the Methods in Molecular Biology book series (MIMB,volume 2451)

Abstract

Liposomal nanocarriers are intensively investigated as delivery vehicles for photoactivatable agents used in photodynamic therapy (PDT). The uptake, intracellular distribution, and processing of the nanocarriers are of paramount importance for the effectiveness of the therapy; visualization and analysis of these processes can, therefore, stimulate the development of improved PDT modalities. Here we describe a simple protocol, based on super-resolution imaging, that can be used for detailed quantification of concentration, distribution, and size of individual lipid nanocarriers in adherent mammalian cells.

Key words

  • Photodynamic therapy
  • Photosensitizers
  • Super-resolution microscopy

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2099-1_37
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2099-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kruger CA, Abrahamse H (2018) Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Mol Basel Switz 23. https://doi.org/10.3390/molecules23102628

  2. Hong EJ, Choi DG, Shim MS (2016) Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B [Internet] 6:297–307. [cited 2020 Dec 8]. https://doi.org/10.1016/j.apsb.2016.01.007

    CrossRef  Google Scholar 

  3. Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B [Internet] 60:495–497. [cited 2020 Dec 8]. https://doi.org/10.1007/BF01081333

    CrossRef  Google Scholar 

  4. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945. https://doi.org/10.1038/nmeth.1257

    CAS  CrossRef  PubMed  Google Scholar 

  5. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946. https://doi.org/10.1021/ar200023x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Silva AKA, Kolosnjaj-Tabi J, Bonneau S, Marangon I, Boggetto N, Aubertin K, Clément O, Bureau MF, Luciani N, Gazeau F, Wilhelm C (2013) Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. ACS Nano 7:4954–4966. https://doi.org/10.1021/nn400269x

    CAS  CrossRef  PubMed  Google Scholar 

  7. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916. https://doi.org/10.1073/pnas.0609643104

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Kuo C, Hochstrasser RM (2011) Super-resolution microscopy of lipid bilayer phases. J Am Chem Soc 133:4664–4667. https://doi.org/10.1021/ja1099193

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Liu J-X, Xin B, Li C, Xie N-H, Gong W-L, Huang Z-L, Zhu M-Q (2017) PEGylated perylenemonoimide-dithienylethene for super-resolution imaging of liposomes. ACS Appl Mater Interfaces 9:10,338–10,343. https://doi.org/10.1021/acsami.6b15076

    CAS  CrossRef  Google Scholar 

  10. Xu H, Chen B, Gong W, Yang Z, Qu J (2020) Nanoliposomes Co-encapsulating photoswitchable probe and photosensitizer for super-resolution optical imaging and photodynamic therapy. Cytom Part J Int Soc Anal Cytol 97:54–60. https://doi.org/10.1002/cyto.a.23864

    CAS  CrossRef  Google Scholar 

  11. Nahidiazar L, Agronskaia AV, Broertjes J, van den Broek B, Jalink K (2016) Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PloS One 11:e0158884. https://doi.org/10.1371/journal.pone.0158884

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Broekgaarden M, de Kroon AIPM, van Gulik TM, Heger M (2014) Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. Curr Med Chem 21:377–391

    CAS  CrossRef  PubMed  Google Scholar 

  13. Broekgaarden M, Weijer R, Krekorian M, IJssel B, Kos M, Alles LK, Wijk AC, Bikadi Z, Hazai E, Gulik TM, Heger M (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 6:1639–1662. https://doi.org/10.1007/s12274-016-1059-0

  14. Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinforma Oxf Engl 30:2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemek M. Krawczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Scutigliani, E.M., Kochan, J.A., Desclos, E.C.B., Jonker, A., Heger, M., Krawczyk, P.M. (2022). Super-Resolution Imaging of Intracellular Lipid Nanocarriers to Study Drug Delivery in Photodynamic Therapy. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_37

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols