Skip to main content

Photochemical Internalization as a New Strategy to Enhance Efficacy of Antimicrobial Agents Against Intracellular Infections

  • 348 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2451)


Pathogens such as Staphylococcus aureus are able to survive in many types of host cells including phagocytes such as neutrophils and macrophages, thereby resulting in intracellular infections. Treatment of intracellular infections by conventional antimicrobials (e.g., antibiotics) is often ineffective due to low intracellular efficacy of the drugs. Thus, novel techniques which can enhance the activity of antimicrobials within cells are highly demanded. Our recent studies have shown that photochemical internalization (PCI) is a promising approach for improving the efficacy of antibiotics such as gentamicin against intracellular staphylococcal infection. In this chapter, we describe the protocols aiming to study the potential of PCI-antibiotic treatment for intracellular infections in vitro and in vivo using a RAW 264.7 cell infection model and a zebrafish embryo infection model. Proof of concept of this approach is demonstrated. The protocols are expected to prompt further development of PCI-antimicrobial based novel therapies for clinically challenging infectious diseases associated with intracellular survival of pathogens.

Key words

  • Photochemical internalization (PCI)
  • Cytosolic release
  • Antibiotics
  • Intracellular infections
  • Staphylococci
  • Zebrafish embryo
  • Mouse macrophage

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2099-1_35
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2099-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJAM, Zaat SAJ, Schultz MJ, Grainger DW (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4:153.

    CAS  CrossRef  Google Scholar 

  2. Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43(6):485–496.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM (2003) Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am 17(3):615–634

    CrossRef  PubMed  Google Scholar 

  4. Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67(9):625–630.

    CAS  CrossRef  Google Scholar 

  5. Tulkens PM (1991) Intracellular-distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10(2):100–106

    CAS  CrossRef  PubMed  Google Scholar 

  6. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4(4):295–305.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Baharoglu Z, Krin E, Mazel D (2013) RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet 9(4):e1003421.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Alipour M, Hosseinkhani S, Sheikhnejad R, Cheraghi R (2017) Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci Rep 7:41,507.

    CAS  CrossRef  Google Scholar 

  9. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, Kim J, Park S, Darwish M, Lee BC, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578):323–328.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, Chmielewski J (2016) Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J Am Chem Soc 138(34):10,945–10,949.

    CAS  CrossRef  Google Scholar 

  11. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Lysenkova LN, Turchin KF, Danilenko VN, Korolev AM, Preobrazhenskaya MN (2010) The first examples of chemical modification of oligomycin A. J Antibiot (Tokyo) 63(1):17–22.

    CAS  CrossRef  Google Scholar 

  13. Hogset A, Prasmickaite L, Selbo PK, Hellum M, Engesaeter BO, Bonsted A, Berg K (2004) Photochemical internalisation in drug and gene delivery. Adv Drug Deliv Rev 56(1):95–115.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Selbo PK, Weyergang A, Hogset A, Norum OJ, Berstad MB, Vikdal M, Berg K (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148(1):2–12

    CAS  CrossRef  PubMed  Google Scholar 

  15. Zhang X, de Boer L, Heiliegers L, Man-Bovenkerk S, Selbo PK, Drijfhout JW, Hogset A, Zaat SAJ (2018) Photochemical internalization enhances cytosolic release of antibiotic and increases its efficacy against staphylococcal infection. J Control Release 283:214–222.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Renshaw SA, Trede NS (2012) A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech 5(1):38–47.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Heilmann C, Gerke C, PerdreauRemington F, Gotz F (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64(1):277–282

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, de Boer L, Stockhammer OW, Grijpma DW, Spaink HP, Zaat SAJ (2019) A Zebrafish embryo model for in vivo visualization and intravital analysis of biomaterial-associated Staphylococcus aureus infection. J Vis Exp (143).

  19. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):E49–E56.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Brand M, Granato M, Nusslein-Volhard C (2002) Keeping and raising zebrafish. In: Nusslein-Volhard C, Dahm R (eds) Zebrafish, a practical approach. Oxford University Press, Oxford, pp 7–37

    Google Scholar 

  21. Stone MRL, Butler MS, Phetsang W, Cooper MA, Blaskovich MAT (2018) Fluorescent antibiotics: new research tools to fight antibiotic resistance. Trends Biotechnol 36(5):523–536.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Lilletvedt M, Kristensen S, Tonnesen HH, Hogset A, Nardo L (2010) Time-domain evaluation of drug-solvent interactions of the photosensitizers TPCS2a and TPPS2a as part of physicochemical characterization. J Photochem Photobiol A Chem 214(1):40–47.

    CAS  CrossRef  Google Scholar 

  23. Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH (2012) Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp 61.

  24. Riool M, de Boer L, Jaspers V, van der Loos CM, van Wamel WJB, Wu G, Kwakman PHS, Zaat SAJ (2014) Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomater 10(12):5202–5212.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Myrdal SE, Johnson KC, Steyger PS (2005) Cytoplasmic and intra-nuclear binding of gentamicin does not require endocytosis. Hear Res 204(1–2):156–169.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sebastian A. J. Zaat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., de Boer, L., Zaat, S.A.J. (2022). Photochemical Internalization as a New Strategy to Enhance Efficacy of Antimicrobial Agents Against Intracellular Infections. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols