Skip to main content

Extracting the Dynamic Motion of Proteins Using Normal Mode Analysis

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

Normal mode analysis (NMA) is a technique for describing the conformational states accessible to a protein in a minimum energy conformation. NMA gives results similar to those produced by principal components analysis of a molecular dynamics simulation, but with only a fraction of the computational effort. Here, we provide a brief overview of the theory and describe three methods for carrying out NMA, including the use of one of the on-line services, the use of off-line software for calculating the projection of the modes calculated from one conformation onto another, and an all-atom NMA calculated using GROMACS. For all three methods, we will use the E1·2Ca2+ form of the Ca2+-ATPase as a concrete example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonomi M, Camilloni C (eds) (2019) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 2022. Humana Press, New York, NY

    Google Scholar 

  2. Cui Q, Bahar I (eds) (2006) Normal mode analysis. Theory and applications to biological and chemical systems. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  3. González MA (2011) Force fields and molecular dynamics simulations. Collect SFN 12:169–200

    Article  Google Scholar 

  4. Zheng W, Brooks BR, Thirumalai D (2006) Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc Natl Acad Sci U S A 103:7664–7669

    Article  CAS  Google Scholar 

  5. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  CAS  Google Scholar 

  6. Durand P, Trinquier G, Sanejouand YH (1994) A new approach for determining low-frequency normal modes in macromolecules. Biopolymers 34:759–771

    Article  CAS  Google Scholar 

  7. Suhre K, Sanejouand YH (2004) ElNémo: a normal mode web server for protein movements analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Google Scholar 

  8. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Folding Des 2:173–181

    Article  CAS  Google Scholar 

  9. Liu Q, Liang C, Zhou L (2020) Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 29:378–390

    Article  CAS  Google Scholar 

  10. Kityk R, Kopp J, Sinning I et al (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  CAS  Google Scholar 

  11. Bertaccini EJ, Trudell JR, Lindahl E (2007) Normal-mode analysis of the glycine alpha1 receptor by three separate methods. J Chem Inf Model 47:1572–1579

    Article  CAS  Google Scholar 

  12. Skjaerven L, Martinez A, Reuter N (2011) Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins 79:232–243

    Article  CAS  Google Scholar 

  13. Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  CAS  Google Scholar 

  14. Li G, Cui Q (2002) A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2+-ATPase. Biophys J 83:2457–2474

    Article  CAS  Google Scholar 

  15. Reuter N, Hinsen K, Lacapère JJ (2003) Transconformations of the SERCA1 Ca-ATPase: a normal mode study. Biophys J 85:2186–2197

    Article  CAS  Google Scholar 

  16. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  CAS  Google Scholar 

  17. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed incalcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  CAS  Google Scholar 

  18. Zheng W, Brooks BR, Hummer G (2007) Protein conformational transitions explored by mixed elastic network models. Proteins 69:43–57

    Article  CAS  Google Scholar 

  19. Lindahl E, Azuara C, Koehl P et al (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34:W52–W56

    Article  CAS  Google Scholar 

  20. Yang LW, Rader AJ, Liu X, et al (2006) oGNM: online computation of structural dynamics using the gaussian network model. Nucleic Acids Res 34:W24–W31

    Google Scholar 

  21. Li H, Chang YY, Yang LW, et al (2016) iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Res 44:D415–D422

    Google Scholar 

  22. Li H, Chang YY, Lee JY, et al (2017) DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 45:W374–W380

    Google Scholar 

  23. Eyal E, Lum G, Bahar I (2015) The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31:1487–1489

    Article  CAS  Google Scholar 

  24. Emekli U, Schneidman-Duhovny D, Wolfson HJ et al (2008) HingeProt: automated prediction of hinges in protein structures. Proteins 70:1219–1227

    Article  CAS  Google Scholar 

  25. Flores SC, Gerstein MB (2007) FlexOracle: predicting flexible hinges by identification of stable domains. BMC Bioinformatics 8:215

    Article  Google Scholar 

  26. López-Blanco JR, Aliaga JI, Quintana-Ortí ES et al (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271–W276

    Article  Google Scholar 

  27. Tiwari SP, Fugelbakk E, Hollup SM et al (2014) WEBnm v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics 15:427

    Article  Google Scholar 

  28. Bauer JA, Pavlović J, Bauerová-Hlinková V (2019) Normal mode analysis as a routine part of a structural investigation. Molecules 24:3293

    Article  CAS  Google Scholar 

  29. Zheng W (2008) A unification of the elastic network model and the gaussian network model for optimal description of protein conformational motions and fluctuations. Biophys J 94:3853–3857

    Article  CAS  Google Scholar 

  30. Kondrashov DA, Van Wynsberghe AW, Bannen RM et al (2007) Protein structural variation in computational models and crystallographic data. Structure 15:169–177

    Article  CAS  Google Scholar 

  31. Ming D, Wall ME (2005) Allostery in a coarse-grained model of protein dynamics. Phys Rev Lett 95:198103

    Article  Google Scholar 

  32. Yang L, Song G, Jernigan RL (2009) Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci USA 106:12347–12352

    Article  CAS  Google Scholar 

  33. Sanejouand YH (1997) On the role of CD4 conformational change in the HIV-cell fusion process. Acad Sci Paris 320:163–170

    CAS  Google Scholar 

  34. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  CAS  Google Scholar 

  35. Mahajan S, Sanejouand YH (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65

    Article  CAS  Google Scholar 

  36. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373–380

    Article  CAS  Google Scholar 

  37. Genheden S, Kuhn O, Mikulskis P et al (2012) The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 52:2079–2088

    Article  CAS  Google Scholar 

  38. Itoh K, Shimanouchi T (1970) Vibrational frequencies and modes of α-helix. Biopolymers 9:383–399

    Article  CAS  Google Scholar 

  39. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  40. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  41. Brooks BR, Brooks CL III, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comp Chem 30:1545–1615

    Article  CAS  Google Scholar 

  42. Brüschweiler R (1995) Collective protein dynamics and nuclear spin relaxation. J Chem Phys 102:3396–3403

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Eva Kutejová for general support during the writing of this chapter.

This work was supported by a grant from the Scientific Grant Agency of the Ministry of Education, Science, Research, and Sport of the Slovak republic (VEGA) [2/0131/20] and by the Interreg V-A Slovakia-Austria program (https://www.sk-at.eu/) for the project StruBioMol, ITMS: 305011X666 which is co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob A. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bauer, J.A., Bauerová-Hlinková, V. (2022). Extracting the Dynamic Motion of Proteins Using Normal Mode Analysis. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics